Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Constrained Outer-String Representations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493338" target="_blank" >RIV/00216208:11320/24:10493338 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4230/LIPIcs.GD.2024.10" target="_blank" >https://doi.org/10.4230/LIPIcs.GD.2024.10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.GD.2024.10" target="_blank" >10.4230/LIPIcs.GD.2024.10</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Constrained Outer-String Representations

  • Popis výsledku v původním jazyce

    An outer-string representation of a graph is an intersection representation in which each vertex is represented by a curve that is contained in the unit disk and has at least one endpoint on the boundary of the unit disk. In an outer-1-string representation the curves representing any two vertices are in addition allowed to intersect at most once.In this paper, we consider the following constrained version: Given a graph G plus a cyclic order v_1,...,v_n of the vertices in G, test whether G has an outer-string or an outer-1-string representation in which the curves representing v_1,...,v_n intersect the boundary of the unit disk in this order. We first show that a graph has an outer-string representation for all possible cyclic orders of the vertices if and only if the graph is the complement of a chordal graph. Then we turn towards the situation where one particular cyclic order of the vertices is fixed.We characterize the chordal graphs admitting a constrained outer-string representation and the trees and cycles admitting a constrained outer-1-string representation. The characterizations yield polynomial-time recognition and construction algorithms; in the case of outer-1-string representations the run time is linear. We also show how to decide in polynomial time whether an arbitrary graph admits a constrained L-shaped outer-1-string representation. In an L-shaped representation the curves are 1-bend orthogonal polylines anchored on a horizontal line, and they are contained in the half-plane below that line. However, not even all paths with a constrained outer-1-string representation admit one with L-shapes. We show that 2-bend orthogonal polylines are sufficient for trees and cycles with a constrained outer-1-string representation.

  • Název v anglickém jazyce

    Constrained Outer-String Representations

  • Popis výsledku anglicky

    An outer-string representation of a graph is an intersection representation in which each vertex is represented by a curve that is contained in the unit disk and has at least one endpoint on the boundary of the unit disk. In an outer-1-string representation the curves representing any two vertices are in addition allowed to intersect at most once.In this paper, we consider the following constrained version: Given a graph G plus a cyclic order v_1,...,v_n of the vertices in G, test whether G has an outer-string or an outer-1-string representation in which the curves representing v_1,...,v_n intersect the boundary of the unit disk in this order. We first show that a graph has an outer-string representation for all possible cyclic orders of the vertices if and only if the graph is the complement of a chordal graph. Then we turn towards the situation where one particular cyclic order of the vertices is fixed.We characterize the chordal graphs admitting a constrained outer-string representation and the trees and cycles admitting a constrained outer-1-string representation. The characterizations yield polynomial-time recognition and construction algorithms; in the case of outer-1-string representations the run time is linear. We also show how to decide in polynomial time whether an arbitrary graph admits a constrained L-shaped outer-1-string representation. In an L-shaped representation the curves are 1-bend orthogonal polylines anchored on a horizontal line, and they are contained in the half-plane below that line. However, not even all paths with a constrained outer-1-string representation admit one with L-shapes. We show that 2-bend orthogonal polylines are sufficient for trees and cycles with a constrained outer-1-string representation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX23-04949X" target="_blank" >GX23-04949X: Stěžejní otázky diskrétní geometrie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    32nd International Symposium on Graph Drawing and Network Visualization, GD 2024, September 18-20, 2024, Vienna, Austria

  • ISBN

    978-3-95977-343-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Název nakladatele

    Schloss Dagstuhl - Leibniz-Zentrum für Informatik

  • Místo vydání

    Dagstuhl

  • Místo konání akce

    Wien

  • Datum konání akce

    18. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku