Breaking the Barrier of 2 for the Competitiveness of Longest Queue Drop
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493438" target="_blank" >RIV/00216208:11320/24:10493438 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BmEdgThbwo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BmEdgThbwo</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3676887" target="_blank" >10.1145/3676887</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Breaking the Barrier of 2 for the Competitiveness of Longest Queue Drop
Popis výsledku v původním jazyce
We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the input port, each packet designated for one output port. Each packet is added to the queue of the respective output port. If the total number of packets exceeds the capacity of the buffer, some packets have to be irrevocably evicted. At the end of each time step, each output port transmits a packet in its queue, and the goal is to maximize the number of transmitted packets. The Longest Queue Drop (LQD) online algorithm accepts any arriving packet to the buffer. However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet from whichever queue is currently the longest, breaking ties arbitrarily. The LQD algorithm was first introduced in 1991, and has been known to be 2-competitive since 2001. Although LQD remains the best known online algorithm for the problem and is of practical interest, determining its true competitiveness is a long-standing open problem. We show that LQD is 1.6918-competitive, establishing the first (2 - P ) upper bound for the competitive ratio of LQD for a constant epsilon> 0 .
Název v anglickém jazyce
Breaking the Barrier of 2 for the Competitiveness of Longest Queue Drop
Popis výsledku anglicky
We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the input port, each packet designated for one output port. Each packet is added to the queue of the respective output port. If the total number of packets exceeds the capacity of the buffer, some packets have to be irrevocably evicted. At the end of each time step, each output port transmits a packet in its queue, and the goal is to maximize the number of transmitted packets. The Longest Queue Drop (LQD) online algorithm accepts any arriving packet to the buffer. However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet from whichever queue is currently the longest, breaking ties arbitrarily. The LQD algorithm was first introduced in 1991, and has been known to be 2-competitive since 2001. Although LQD remains the best known online algorithm for the problem and is of practical interest, determining its true competitiveness is a long-standing open problem. We show that LQD is 1.6918-competitive, establishing the first (2 - P ) upper bound for the competitive ratio of LQD for a constant epsilon> 0 .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-22997S" target="_blank" >GA22-22997S: Efektivní a realistické modely ve výpočetní teorii voleb</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Algorithms
ISSN
1549-6325
e-ISSN
1549-6333
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
38
Kód UT WoS článku
001356742900001
EID výsledku v databázi Scopus
2-s2.0-85207064777