Enhancing Multi-Agent Robustness: Addressing the Off-Diagonal Problem with Population-Based Training
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493454" target="_blank" >RIV/00216208:11320/24:10493454 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICTAI62512.2024.00106" target="_blank" >https://doi.org/10.1109/ICTAI62512.2024.00106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTAI62512.2024.00106" target="_blank" >10.1109/ICTAI62512.2024.00106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing Multi-Agent Robustness: Addressing the Off-Diagonal Problem with Population-Based Training
Popis výsledku v původním jazyce
Cooperation with previously unseen agents in multi-agent cooperative scenario is a challenging problem. Agents trained together tend to rely on certain conventions discovered during the training that may not be present when they should cooperate with new agents. This leads to unsatisfying performance in such cases. We call this the off-diagonal problem. In this paper, we investigate this problem on more than 20 maps from the Overcooked environment. First, we propose and evaluate a number of metrics to quantify the off-diagonal problem and then we propose a population-based training technique to alleviate this problem. The results show that the proposed metrics can be used to divide the maps into groups based on how much they are affected by this problem, and the population-based training improves the performance of the agents especially in those maps, where the problem is present, without having negative consequences in the other maps.
Název v anglickém jazyce
Enhancing Multi-Agent Robustness: Addressing the Off-Diagonal Problem with Population-Based Training
Popis výsledku anglicky
Cooperation with previously unseen agents in multi-agent cooperative scenario is a challenging problem. Agents trained together tend to rely on certain conventions discovered during the training that may not be present when they should cooperate with new agents. This leads to unsatisfying performance in such cases. We call this the off-diagonal problem. In this paper, we investigate this problem on more than 20 maps from the Overcooked environment. First, we propose and evaluate a number of metrics to quantify the off-diagonal problem and then we propose a population-based training technique to alleviate this problem. The results show that the proposed metrics can be used to divide the maps into groups based on how much they are affected by this problem, and the population-based training improves the performance of the agents especially in those maps, where the problem is present, without having negative consequences in the other maps.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Tools for Artificial Intelligence (ICTAI)
ISBN
—
ISSN
1082-3409
e-ISSN
2375-0197
Počet stran výsledku
8
Strana od-do
714-721
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos, CA
Místo konání akce
Herndon, VA, USA
Datum konání akce
28. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—