Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA22029W9" target="_blank" >RIV/61988987:17310/21:A22029W9 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61389005:_____/21:00544707

  • Výsledek na webu

    <a href="https://sciendo.com/article/10.2478/cm-2021-0005" target="_blank" >https://sciendo.com/article/10.2478/cm-2021-0005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/cm-2021-0005" target="_blank" >10.2478/cm-2021-0005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

  • Popis výsledku v původním jazyce

    It is known that a real symmetric circulant matrix with diagonal entries d ≥ 0, off-diagonal entries ±1 and orthogonal rows exists only of order 2d + 2 (and trivially of order 1) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d ≥ 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider matrices whose off-diagonal entries are 4th roots of unity; we prove that the order of any such matrix with d different from an odd integer is n = 2d + 2. We also discuss a similar problem for symmetric circulant matrices defined over finite rings Zm. As an application of our results, we show a close connection to mutually unbiased bases, an important open problem in quantum information theory.

  • Název v anglickém jazyce

    Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

  • Popis výsledku anglicky

    It is known that a real symmetric circulant matrix with diagonal entries d ≥ 0, off-diagonal entries ±1 and orthogonal rows exists only of order 2d + 2 (and trivially of order 1) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d ≥ 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider matrices whose off-diagonal entries are 4th roots of unity; we prove that the order of any such matrix with d different from an odd integer is n = 2d + 2. We also discuss a similar problem for symmetric circulant matrices defined over finite rings Zm. As an application of our results, we show a close connection to mutually unbiased bases, an important open problem in quantum information theory.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Communications in Mathematics

  • ISSN

    1804-1388

  • e-ISSN

    2336-1298

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    20

  • Strana od-do

    15-34

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85105719712