Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA22029W9" target="_blank" >RIV/61988987:17310/21:A22029W9 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389005:_____/21:00544707
Výsledek na webu
<a href="https://sciendo.com/article/10.2478/cm-2021-0005" target="_blank" >https://sciendo.com/article/10.2478/cm-2021-0005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/cm-2021-0005" target="_blank" >10.2478/cm-2021-0005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1
Popis výsledku v původním jazyce
It is known that a real symmetric circulant matrix with diagonal entries d ≥ 0, off-diagonal entries ±1 and orthogonal rows exists only of order 2d + 2 (and trivially of order 1) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d ≥ 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider matrices whose off-diagonal entries are 4th roots of unity; we prove that the order of any such matrix with d different from an odd integer is n = 2d + 2. We also discuss a similar problem for symmetric circulant matrices defined over finite rings Zm. As an application of our results, we show a close connection to mutually unbiased bases, an important open problem in quantum information theory.
Název v anglickém jazyce
Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1
Popis výsledku anglicky
It is known that a real symmetric circulant matrix with diagonal entries d ≥ 0, off-diagonal entries ±1 and orthogonal rows exists only of order 2d + 2 (and trivially of order 1) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d ≥ 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider matrices whose off-diagonal entries are 4th roots of unity; we prove that the order of any such matrix with d different from an odd integer is n = 2d + 2. We also discuss a similar problem for symmetric circulant matrices defined over finite rings Zm. As an application of our results, we show a close connection to mutually unbiased bases, an important open problem in quantum information theory.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Mathematics
ISSN
1804-1388
e-ISSN
2336-1298
Svazek periodika
29
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
20
Strana od-do
15-34
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85105719712