Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493489" target="_blank" >RIV/00216208:11320/24:10493489 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4230/LIPIcs.ESA.2024.32" target="_blank" >https://doi.org/10.4230/LIPIcs.ESA.2024.32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2024.32" target="_blank" >10.4230/LIPIcs.ESA.2024.32</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds

  • Popis výsledku v původním jazyce

    We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear optimization, shedding new light on classic results in the field. This includes an improvement on record running time bounds obtained from a slight extension of Lenstra&apos;s 1983 algorithm [Math. Oper. Res.&apos;83] to optimizing under few constraints with small coefficients. This is important for ubiquitous tasks like knapsack-, subset sum- or scheduling problems [Eisenbrand and Weismantel, SODA&apos;18, Jansen and Rohwedder, ITCS&apos;19]. Further, we extend our algorithm to an intermediate linear optimization problem when the matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line of recent results on this and similarly restricted cases [Jansen et al. ICALP&apos;19, Cslovjecsek et al. SODA&apos;21, Brand et al. AAAI&apos;21, Klein, Reuter SODA&apos;22, Cslovjecsek et al. SODA&apos;24]. We also show that the generalization of two fundamental classes of structured constraints from these works (n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially by an influential paper of Hochbaum and Shanthikumar, namely that &quot;convex separable optimization is not much harder than linear optimization&quot; [J. ACM&apos;90]. To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math. Prog.&apos;03], and our work is the first to give bounds on the norm of its elements. Importantly, we use these bounds differently from how purely-integer Graver bounds are exploited in related approaches, and prove that, surprisingly, this cannot be avoided.

  • Název v anglickém jazyce

    Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds

  • Popis výsledku anglicky

    We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear optimization, shedding new light on classic results in the field. This includes an improvement on record running time bounds obtained from a slight extension of Lenstra&apos;s 1983 algorithm [Math. Oper. Res.&apos;83] to optimizing under few constraints with small coefficients. This is important for ubiquitous tasks like knapsack-, subset sum- or scheduling problems [Eisenbrand and Weismantel, SODA&apos;18, Jansen and Rohwedder, ITCS&apos;19]. Further, we extend our algorithm to an intermediate linear optimization problem when the matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line of recent results on this and similarly restricted cases [Jansen et al. ICALP&apos;19, Cslovjecsek et al. SODA&apos;21, Brand et al. AAAI&apos;21, Klein, Reuter SODA&apos;22, Cslovjecsek et al. SODA&apos;24]. We also show that the generalization of two fundamental classes of structured constraints from these works (n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially by an influential paper of Hochbaum and Shanthikumar, namely that &quot;convex separable optimization is not much harder than linear optimization&quot; [J. ACM&apos;90]. To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math. Prog.&apos;03], and our work is the first to give bounds on the norm of its elements. Importantly, we use these bounds differently from how purely-integer Graver bounds are exploited in related approaches, and prove that, surprisingly, this cannot be avoided.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-22997S" target="_blank" >GA22-22997S: Efektivní a realistické modely ve výpočetní teorii voleb</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-338-6

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Název nakladatele

    Schloss Dagstuhl -- Leibniz-Zentrum für Informatik

  • Místo vydání

    Dagstuhl, DE

  • Místo konání akce

    London, UK

  • Datum konání akce

    2. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku