Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On 3-Coloring Circle Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493555" target="_blank" >RIV/00216208:11320/24:10493555 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=agQuh34HRK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=agQuh34HRK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7155/jgaa.v28i1.2991" target="_blank" >10.7155/jgaa.v28i1.2991</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On 3-Coloring Circle Graphs

  • Popis výsledku v původním jazyce

    Given a graph G with a fixed vertex order PRECEDES, one obtains a circle graph H whose vertices are the edges of G and where two such edges are adjacent if and only if their endpoints are pairwise distinct and alternate in PRECEDES. Therefore, the problem of determining whether G has a k-page book embedding with spine order PRECEDES is equivalent to deciding whether H can be colored with k colors. Finding a k-coloring for a circle graph is known to be NP-complete for k &gt;= 4 [9] and trivial for k &lt;= 2. For k = 3, Unger (1992) claims an efficient algorithm that finds a 3-coloring in O(n log n) time, if it exists. Given a circle graph H, Unger&apos;s algorithm (1) constructs a 3-Sat formula Φ that is satisfiable if and only if H admits a 3-coloring and (2) solves Φ by a backtracking strategy that relies on the structure imposed by the circle graph. However, the extended abstract misses several details and Unger refers to his PhD thesis (in German) for details. In this paper we argue that Unger&apos;s algorithm for 3-coloring circle graphs is not correct and that 3-coloring circle graphs should be considered as an open problem. We show that step (1) of Unger&apos;s algorithm is incorrect by exhibiting a circle graph and its representation whose formula Φ is satisfiable but that is not 3-colorable. We further show that Unger&apos;s backtracking strategy for solving Φ in step (2) may produce incorrect results and give empirical evidence that it exhibits a runtime behaviour that is not consistent with the claimed running time.

  • Název v anglickém jazyce

    On 3-Coloring Circle Graphs

  • Popis výsledku anglicky

    Given a graph G with a fixed vertex order PRECEDES, one obtains a circle graph H whose vertices are the edges of G and where two such edges are adjacent if and only if their endpoints are pairwise distinct and alternate in PRECEDES. Therefore, the problem of determining whether G has a k-page book embedding with spine order PRECEDES is equivalent to deciding whether H can be colored with k colors. Finding a k-coloring for a circle graph is known to be NP-complete for k &gt;= 4 [9] and trivial for k &lt;= 2. For k = 3, Unger (1992) claims an efficient algorithm that finds a 3-coloring in O(n log n) time, if it exists. Given a circle graph H, Unger&apos;s algorithm (1) constructs a 3-Sat formula Φ that is satisfiable if and only if H admits a 3-coloring and (2) solves Φ by a backtracking strategy that relies on the structure imposed by the circle graph. However, the extended abstract misses several details and Unger refers to his PhD thesis (in German) for details. In this paper we argue that Unger&apos;s algorithm for 3-coloring circle graphs is not correct and that 3-coloring circle graphs should be considered as an open problem. We show that step (1) of Unger&apos;s algorithm is incorrect by exhibiting a circle graph and its representation whose formula Φ is satisfiable but that is not 3-colorable. We further show that Unger&apos;s backtracking strategy for solving Φ in step (2) may produce incorrect results and give empirical evidence that it exhibits a runtime behaviour that is not consistent with the claimed running time.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Graph Algorithms and Applications

  • ISSN

    1526-1719

  • e-ISSN

    1526-1719

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    389-402

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85209207431