On 3-Coloring Circle Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493555" target="_blank" >RIV/00216208:11320/24:10493555 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=agQuh34HRK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=agQuh34HRK</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7155/jgaa.v28i1.2991" target="_blank" >10.7155/jgaa.v28i1.2991</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On 3-Coloring Circle Graphs
Popis výsledku v původním jazyce
Given a graph G with a fixed vertex order PRECEDES, one obtains a circle graph H whose vertices are the edges of G and where two such edges are adjacent if and only if their endpoints are pairwise distinct and alternate in PRECEDES. Therefore, the problem of determining whether G has a k-page book embedding with spine order PRECEDES is equivalent to deciding whether H can be colored with k colors. Finding a k-coloring for a circle graph is known to be NP-complete for k >= 4 [9] and trivial for k <= 2. For k = 3, Unger (1992) claims an efficient algorithm that finds a 3-coloring in O(n log n) time, if it exists. Given a circle graph H, Unger's algorithm (1) constructs a 3-Sat formula Φ that is satisfiable if and only if H admits a 3-coloring and (2) solves Φ by a backtracking strategy that relies on the structure imposed by the circle graph. However, the extended abstract misses several details and Unger refers to his PhD thesis (in German) for details. In this paper we argue that Unger's algorithm for 3-coloring circle graphs is not correct and that 3-coloring circle graphs should be considered as an open problem. We show that step (1) of Unger's algorithm is incorrect by exhibiting a circle graph and its representation whose formula Φ is satisfiable but that is not 3-colorable. We further show that Unger's backtracking strategy for solving Φ in step (2) may produce incorrect results and give empirical evidence that it exhibits a runtime behaviour that is not consistent with the claimed running time.
Název v anglickém jazyce
On 3-Coloring Circle Graphs
Popis výsledku anglicky
Given a graph G with a fixed vertex order PRECEDES, one obtains a circle graph H whose vertices are the edges of G and where two such edges are adjacent if and only if their endpoints are pairwise distinct and alternate in PRECEDES. Therefore, the problem of determining whether G has a k-page book embedding with spine order PRECEDES is equivalent to deciding whether H can be colored with k colors. Finding a k-coloring for a circle graph is known to be NP-complete for k >= 4 [9] and trivial for k <= 2. For k = 3, Unger (1992) claims an efficient algorithm that finds a 3-coloring in O(n log n) time, if it exists. Given a circle graph H, Unger's algorithm (1) constructs a 3-Sat formula Φ that is satisfiable if and only if H admits a 3-coloring and (2) solves Φ by a backtracking strategy that relies on the structure imposed by the circle graph. However, the extended abstract misses several details and Unger refers to his PhD thesis (in German) for details. In this paper we argue that Unger's algorithm for 3-coloring circle graphs is not correct and that 3-coloring circle graphs should be considered as an open problem. We show that step (1) of Unger's algorithm is incorrect by exhibiting a circle graph and its representation whose formula Φ is satisfiable but that is not 3-colorable. We further show that Unger's backtracking strategy for solving Φ in step (2) may produce incorrect results and give empirical evidence that it exhibits a runtime behaviour that is not consistent with the claimed running time.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Algorithms and Applications
ISSN
1526-1719
e-ISSN
1526-1719
Svazek periodika
28
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
389-402
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85209207431