Exponential Separation Between Powers of Regular and General Resolution over Parities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493810" target="_blank" >RIV/00216208:11320/24:10493810 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.CCC.2024.23" target="_blank" >https://doi.org/10.4230/LIPIcs.CCC.2024.23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2024.23" target="_blank" >10.4230/LIPIcs.CCC.2024.23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exponential Separation Between Powers of Regular and General Resolution over Parities
Popis výsledku v původním jazyce
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014]. Very recently, Efremenko, Garlík and Itsykson [Klim Efremenko et al., 2023] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exist short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and that of regular ResLin for any natural notion of regularity.Our argument, while building upon the work of Efremenko et al. [Klim Efremenko et al., 2023], uses additional ideas from the literature on lifting theorems.
Název v anglickém jazyce
Exponential Separation Between Powers of Regular and General Resolution over Parities
Popis výsledku anglicky
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014]. Very recently, Efremenko, Garlík and Itsykson [Klim Efremenko et al., 2023] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exist short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and that of regular ResLin for any natural notion of regularity.Our argument, while building upon the work of Efremenko et al. [Klim Efremenko et al., 2023], uses additional ideas from the literature on lifting theorems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GN22-14872O" target="_blank" >GN22-14872O: Kombinatorické metody v teorii informace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceeding of 39th Computational Complexity Conference (CCC 2024)
ISBN
978-3-95977-331-7
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
32
Strana od-do
1-32
Název nakladatele
Leibniz International Proceedings in Informatics (LIPIcs)
Místo vydání
Schloss Dagstuhl
Místo konání akce
Ann Arbor
Datum konání akce
22. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—