User Perceptions of Diversity in Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494543" target="_blank" >RIV/00216208:11320/24:10494543 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3627043.3659555" target="_blank" >https://doi.org/10.1145/3627043.3659555</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3627043.3659555" target="_blank" >10.1145/3627043.3659555</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
User Perceptions of Diversity in Recommender Systems
Popis výsledku v původním jazyce
In the context of recommender systems (RS), the concept of diversity is probably the most studied perspective beyond mere accuracy. Despite the extensive development of diversity measures and enhancement methods, the understanding of how users perceive diversity in recommendations remains limited. This gap hinders progress in multi-objective RS, as it challenges the alignment of algorithmic advancements with genuine user needs. Addressing this, our study delves into two key aspects of diversity perception in RS. We investigate user responses to recommendation lists generated using varied diversity metrics but identical diversification thresholds, and lists created with the same metrics but differing thresholds. Our findings reveal a user preference for metadata and content-based diversity metrics over collaborative ones. Interestingly, while users typically recognize more diversified lists as being more diverse in scenarios with significant diversification differences, this perception is not consistently linear and quickly diminishes when the diversification variance between lists is less pronounced. This study sheds light on the nuanced user perceptions of diversity in RS, providing valuable insights for the development of more user-centric recommendation algorithms. Study data and analysis scripts are available from https://osf.io/9y8gx/.
Název v anglickém jazyce
User Perceptions of Diversity in Recommender Systems
Popis výsledku anglicky
In the context of recommender systems (RS), the concept of diversity is probably the most studied perspective beyond mere accuracy. Despite the extensive development of diversity measures and enhancement methods, the understanding of how users perceive diversity in recommendations remains limited. This gap hinders progress in multi-objective RS, as it challenges the alignment of algorithmic advancements with genuine user needs. Addressing this, our study delves into two key aspects of diversity perception in RS. We investigate user responses to recommendation lists generated using varied diversity metrics but identical diversification thresholds, and lists created with the same metrics but differing thresholds. Our findings reveal a user preference for metadata and content-based diversity metrics over collaborative ones. Interestingly, while users typically recognize more diversified lists as being more diverse in scenarios with significant diversification differences, this perception is not consistently linear and quickly diminishes when the diversification variance between lists is less pronounced. This study sheds light on the nuanced user perceptions of diversity in RS, providing valuable insights for the development of more user-centric recommendation algorithms. Study data and analysis scripts are available from https://osf.io/9y8gx/.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 32ND ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2024
ISBN
979-8-4007-0433-8
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
212-222
Název nakladatele
ASSOC COMPUTING MACHINERY
Místo vydání
NEW YORK
Místo konání akce
Cagliari
Datum konání akce
1. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001285444600024