Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Effect of Similarity Metric and Group Size on Outlier Selection & Satisfaction in Group Recommender Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468874" target="_blank" >RIV/00216208:11320/23:10468874 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3563359.3597386" target="_blank" >https://doi.org/10.1145/3563359.3597386</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3563359.3597386" target="_blank" >10.1145/3563359.3597386</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Effect of Similarity Metric and Group Size on Outlier Selection & Satisfaction in Group Recommender Systems

  • Popis výsledku v původním jazyce

    Group recommender systems (GRS) are a specific case of recommender systems (RS), where recommendations are constructed to a group of users rather than an individual. GRS has diverse application areas including trip planning, recommending movies to watch together, or music in shared environments. However, due to the lack of large datasets with group decision-making feedback information, or even the group definitions, GRS approaches are often evaluated offline w.r.t. individual user feedback and artificially generated groups. These synthetic groups are usually constructed w.r.t. pre-defined group size and inter-user similarity metric. While numerous variants of synthetic group generation procedures were utilized so far, its impact on the evaluation results was not sufficiently discussed. In this paper, we address this research gap by investigating the impact of various synthetic group generation procedures, namely the usage of different user similarity metrics and the effect of group sizes. We consider them in the context of &quot;outlier vs. majority&quot; groups, where a group of similar users is extended with one or more diverse ones. Experimental results indicate a strong impact of the selected similarity metric on both the typical characteristics of selected outliers as well as the performance of individual GRS algorithms. Moreover, we show that certain algorithms better adapt to larger groups than others.

  • Název v anglickém jazyce

    The Effect of Similarity Metric and Group Size on Outlier Selection & Satisfaction in Group Recommender Systems

  • Popis výsledku anglicky

    Group recommender systems (GRS) are a specific case of recommender systems (RS), where recommendations are constructed to a group of users rather than an individual. GRS has diverse application areas including trip planning, recommending movies to watch together, or music in shared environments. However, due to the lack of large datasets with group decision-making feedback information, or even the group definitions, GRS approaches are often evaluated offline w.r.t. individual user feedback and artificially generated groups. These synthetic groups are usually constructed w.r.t. pre-defined group size and inter-user similarity metric. While numerous variants of synthetic group generation procedures were utilized so far, its impact on the evaluation results was not sufficiently discussed. In this paper, we address this research gap by investigating the impact of various synthetic group generation procedures, namely the usage of different user similarity metrics and the effect of group sizes. We consider them in the context of &quot;outlier vs. majority&quot; groups, where a group of similar users is extended with one or more diverse ones. Experimental results indicate a strong impact of the selected similarity metric on both the typical characteristics of selected outliers as well as the performance of individual GRS algorithms. Moreover, we show that certain algorithms better adapt to larger groups than others.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization

  • ISBN

    978-1-4503-9891-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    296-301

  • Název nakladatele

    ACM

  • Místo vydání

    New York, NY, USA

  • Místo konání akce

    Limassol, Cyprus

  • Datum konání akce

    26. 6. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku