The Effect of Similarity Metric and Group Size on Outlier Selection & Satisfaction in Group Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468874" target="_blank" >RIV/00216208:11320/23:10468874 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3563359.3597386" target="_blank" >https://doi.org/10.1145/3563359.3597386</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3563359.3597386" target="_blank" >10.1145/3563359.3597386</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Effect of Similarity Metric and Group Size on Outlier Selection & Satisfaction in Group Recommender Systems
Popis výsledku v původním jazyce
Group recommender systems (GRS) are a specific case of recommender systems (RS), where recommendations are constructed to a group of users rather than an individual. GRS has diverse application areas including trip planning, recommending movies to watch together, or music in shared environments. However, due to the lack of large datasets with group decision-making feedback information, or even the group definitions, GRS approaches are often evaluated offline w.r.t. individual user feedback and artificially generated groups. These synthetic groups are usually constructed w.r.t. pre-defined group size and inter-user similarity metric. While numerous variants of synthetic group generation procedures were utilized so far, its impact on the evaluation results was not sufficiently discussed. In this paper, we address this research gap by investigating the impact of various synthetic group generation procedures, namely the usage of different user similarity metrics and the effect of group sizes. We consider them in the context of "outlier vs. majority" groups, where a group of similar users is extended with one or more diverse ones. Experimental results indicate a strong impact of the selected similarity metric on both the typical characteristics of selected outliers as well as the performance of individual GRS algorithms. Moreover, we show that certain algorithms better adapt to larger groups than others.
Název v anglickém jazyce
The Effect of Similarity Metric and Group Size on Outlier Selection & Satisfaction in Group Recommender Systems
Popis výsledku anglicky
Group recommender systems (GRS) are a specific case of recommender systems (RS), where recommendations are constructed to a group of users rather than an individual. GRS has diverse application areas including trip planning, recommending movies to watch together, or music in shared environments. However, due to the lack of large datasets with group decision-making feedback information, or even the group definitions, GRS approaches are often evaluated offline w.r.t. individual user feedback and artificially generated groups. These synthetic groups are usually constructed w.r.t. pre-defined group size and inter-user similarity metric. While numerous variants of synthetic group generation procedures were utilized so far, its impact on the evaluation results was not sufficiently discussed. In this paper, we address this research gap by investigating the impact of various synthetic group generation procedures, namely the usage of different user similarity metrics and the effect of group sizes. We consider them in the context of "outlier vs. majority" groups, where a group of similar users is extended with one or more diverse ones. Experimental results indicate a strong impact of the selected similarity metric on both the typical characteristics of selected outliers as well as the performance of individual GRS algorithms. Moreover, we show that certain algorithms better adapt to larger groups than others.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization
ISBN
978-1-4503-9891-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
296-301
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Limassol, Cyprus
Datum konání akce
26. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—