Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10416944" target="_blank" >RIV/00216208:11320/20:10416944 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3372923.3404781" target="_blank" >https://doi.org/10.1145/3372923.3404781</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3372923.3404781" target="_blank" >10.1145/3372923.3404781</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce

  • Popis výsledku v původním jazyce

    In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommenders were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 64% of the approaches. Furthermore, we observed that on-line results are considerably affected by the seniority of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of novelty had a negative impact on the on-line results for them.

  • Název v anglickém jazyce

    Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce

  • Popis výsledku anglicky

    In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommenders were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 64% of the approaches. Furthermore, we observed that on-line results are considerably affected by the seniority of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of novelty had a negative impact on the on-line results for them.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexibilní modely pro hledání známé scény v rozsáhlých kolekcích videa</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 31st ACM Conference on Hypertext and Social Media

  • ISBN

    978-1-4503-7098-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    291-300

  • Název nakladatele

    ACM

  • Místo vydání

    New York, USA

  • Místo konání akce

    Virtual Event, USA

  • Datum konání akce

    13. 7. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku