Rank-sensitive proportional aggregations in dynamic recommendation scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448380" target="_blank" >RIV/00216208:11320/22:10448380 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RPXhiLPyJ5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RPXhiLPyJ5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11257-021-09311-w" target="_blank" >10.1007/s11257-021-09311-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rank-sensitive proportional aggregations in dynamic recommendation scenarios
Popis výsledku v původním jazyce
In this paper, we focus on the problem of rank-sensitive proportionality preservation when aggregating outputs of multiple recommender systems in dynamic recommendation scenarios. We believe that individual recommenders may provide complementary views on the user's preferences or needs, and therefore, their proportional (i.e. unbiased) aggregation may be beneficial for the long-term user satisfaction. We propose an aggregation framework (FuzzDA) based on a modified D'Hondt's algorithm (DA) for proportional mandates allocation. Specifically, we adjusted DA to register fuzzy membership of items and modified the selection procedure to balance both relevance and proportionality criteria. Furthermore, we propose several iterative votes assignment strategies and negative implicit feedback incorporation strategies to make FuzzDA framework applicable in dynamic recommendation scenarios. Overall, the framework should provide benefits w.r.t. long-term novelty of recommendations, diversity of recommended items as well as overall relevance. We evaluated FuzzDA framework thoroughly both in offline simulations and in online A/B testing. Framework variants outperformed baselines w.r.t. click-through rate (CTR) in most of the evaluated scenarios. Some variants of FuzzDA also provided the best or close-to-best iterative novelty (while maintaining very high CTR). While the impact of the framework variants on user-wise diversity was not so extensive, the trade-off between CTR and diversity seems reasonable.
Název v anglickém jazyce
Rank-sensitive proportional aggregations in dynamic recommendation scenarios
Popis výsledku anglicky
In this paper, we focus on the problem of rank-sensitive proportionality preservation when aggregating outputs of multiple recommender systems in dynamic recommendation scenarios. We believe that individual recommenders may provide complementary views on the user's preferences or needs, and therefore, their proportional (i.e. unbiased) aggregation may be beneficial for the long-term user satisfaction. We propose an aggregation framework (FuzzDA) based on a modified D'Hondt's algorithm (DA) for proportional mandates allocation. Specifically, we adjusted DA to register fuzzy membership of items and modified the selection procedure to balance both relevance and proportionality criteria. Furthermore, we propose several iterative votes assignment strategies and negative implicit feedback incorporation strategies to make FuzzDA framework applicable in dynamic recommendation scenarios. Overall, the framework should provide benefits w.r.t. long-term novelty of recommendations, diversity of recommended items as well as overall relevance. We evaluated FuzzDA framework thoroughly both in offline simulations and in online A/B testing. Framework variants outperformed baselines w.r.t. click-through rate (CTR) in most of the evaluated scenarios. Some variants of FuzzDA also provided the best or close-to-best iterative novelty (while maintaining very high CTR). While the impact of the framework variants on user-wise diversity was not so extensive, the trade-off between CTR and diversity seems reasonable.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-22071Y" target="_blank" >GJ19-22071Y: Flexibilní modely pro hledání známé scény v rozsáhlých kolekcích videa</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
User Modelling and User-Adapted Interaction
ISSN
0924-1868
e-ISSN
1573-1391
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
62
Strana od-do
685-746
Kód UT WoS článku
000736936900001
EID výsledku v databázi Scopus
2-s2.0-85122018051