Towards Results-level Proportionality for Multi-objective Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447483" target="_blank" >RIV/00216208:11320/22:10447483 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3477495.3531787" target="_blank" >https://doi.org/10.1145/3477495.3531787</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3477495.3531787" target="_blank" >10.1145/3477495.3531787</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Results-level Proportionality for Multi-objective Recommender Systems
Popis výsledku v původním jazyce
The main focus of our work is the problem of multiple objectives optimization (MOO) while providing a final list of recommendations to the user. Currently, system designers can tune MOO by setting importance of individual objectives, usually in some kind of weighted average setting. However, this does not have to translate into the presence of such objectives in the final results. In contrast, in our work we would like to allow system designers or end-users to directly quantify the required relative ratios of individual objectives in the resulting recommendations, e.g., the final results should have 60% relevance, 30% diversity and 10% novelty. If individual objectives are transformed to represent quality on the same scale, these result conditioning expressions may greatly contribute towards recommendations tuneability and explainability as well as user's control over recommendations. To achieve this task, we propose an iterative algorithm inspired by the mandates allocation problem in public elections. The algorithm is applicable as long as per-item marginal gains of individual objectives can be calculated. Effectiveness of the algorithm is evaluated on several settings of relevance-novelty-diversity optimization problem. Furthermore, we also outline several options to scale individual objectives to represent similar value for the user.
Název v anglickém jazyce
Towards Results-level Proportionality for Multi-objective Recommender Systems
Popis výsledku anglicky
The main focus of our work is the problem of multiple objectives optimization (MOO) while providing a final list of recommendations to the user. Currently, system designers can tune MOO by setting importance of individual objectives, usually in some kind of weighted average setting. However, this does not have to translate into the presence of such objectives in the final results. In contrast, in our work we would like to allow system designers or end-users to directly quantify the required relative ratios of individual objectives in the resulting recommendations, e.g., the final results should have 60% relevance, 30% diversity and 10% novelty. If individual objectives are transformed to represent quality on the same scale, these result conditioning expressions may greatly contribute towards recommendations tuneability and explainability as well as user's control over recommendations. To achieve this task, we propose an iterative algorithm inspired by the mandates allocation problem in public elections. The algorithm is applicable as long as per-item marginal gains of individual objectives can be calculated. Effectiveness of the algorithm is evaluated on several settings of relevance-novelty-diversity optimization problem. Furthermore, we also outline several options to scale individual objectives to represent similar value for the user.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
ISBN
978-1-4503-8732-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1963-1968
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Madrid, Spain
Datum konání akce
11. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—