Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards Results-level Proportionality for Multi-objective Recommender Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10447483" target="_blank" >RIV/00216208:11320/22:10447483 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3477495.3531787" target="_blank" >https://doi.org/10.1145/3477495.3531787</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3477495.3531787" target="_blank" >10.1145/3477495.3531787</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards Results-level Proportionality for Multi-objective Recommender Systems

  • Popis výsledku v původním jazyce

    The main focus of our work is the problem of multiple objectives optimization (MOO) while providing a final list of recommendations to the user. Currently, system designers can tune MOO by setting importance of individual objectives, usually in some kind of weighted average setting. However, this does not have to translate into the presence of such objectives in the final results. In contrast, in our work we would like to allow system designers or end-users to directly quantify the required relative ratios of individual objectives in the resulting recommendations, e.g., the final results should have 60% relevance, 30% diversity and 10% novelty. If individual objectives are transformed to represent quality on the same scale, these result conditioning expressions may greatly contribute towards recommendations tuneability and explainability as well as user&apos;s control over recommendations. To achieve this task, we propose an iterative algorithm inspired by the mandates allocation problem in public elections. The algorithm is applicable as long as per-item marginal gains of individual objectives can be calculated. Effectiveness of the algorithm is evaluated on several settings of relevance-novelty-diversity optimization problem. Furthermore, we also outline several options to scale individual objectives to represent similar value for the user.

  • Název v anglickém jazyce

    Towards Results-level Proportionality for Multi-objective Recommender Systems

  • Popis výsledku anglicky

    The main focus of our work is the problem of multiple objectives optimization (MOO) while providing a final list of recommendations to the user. Currently, system designers can tune MOO by setting importance of individual objectives, usually in some kind of weighted average setting. However, this does not have to translate into the presence of such objectives in the final results. In contrast, in our work we would like to allow system designers or end-users to directly quantify the required relative ratios of individual objectives in the resulting recommendations, e.g., the final results should have 60% relevance, 30% diversity and 10% novelty. If individual objectives are transformed to represent quality on the same scale, these result conditioning expressions may greatly contribute towards recommendations tuneability and explainability as well as user&apos;s control over recommendations. To achieve this task, we propose an iterative algorithm inspired by the mandates allocation problem in public elections. The algorithm is applicable as long as per-item marginal gains of individual objectives can be calculated. Effectiveness of the algorithm is evaluated on several settings of relevance-novelty-diversity optimization problem. Furthermore, we also outline several options to scale individual objectives to represent similar value for the user.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval

  • ISBN

    978-1-4503-8732-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1963-1968

  • Název nakladatele

    ACM

  • Místo vydání

    New York, NY, USA

  • Místo konání akce

    Madrid, Spain

  • Datum konání akce

    11. 7. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku