Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468878" target="_blank" >RIV/00216208:11320/23:10468878 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3604915.3608848" target="_blank" >https://doi.org/10.1145/3604915.3608848</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3604915.3608848" target="_blank" >10.1145/3604915.3608848</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations
Popis výsledku v původním jazyce
Multi-objective recommender systems (MORS) provide suggestions to users according to multiple (and possibly conflicting) goals. When a system optimizes its results at the individual-user level, it tailors them on a user's propensity towards the different objectives. Hence, the capability to understand users' fine-grained needs towards each goal is crucial. In this paper, we present the results of a user study in which we monitored the way users interacted with recommended items, as well as their self-proclaimed propensities towards relevance, novelty, and diversity objectives. The study was divided into several sessions, where users evaluated recommendation lists originating from a relevance-only single-objective baseline as well as MORS. We show that, despite MORS-based recommendations attracting fewer selections, their presence in the early sessions are crucial for users' satisfaction in the later stages. Surprisingly, the self-proclaimed willingness of users to interact with novel and diverse items is not always reflected in the recommendations they accept. Post-study questionnaires provide insights on how to deal with this matter, suggesting that MORS-based results should be accompanied by elements that allow users to understand the recommendations, so as to facilitate the choice of whether a recommendation should be accepted or not. Detailed study results are available at https://bit.ly/looks-can-be-deceiving-repo.
Název v anglickém jazyce
Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations
Popis výsledku anglicky
Multi-objective recommender systems (MORS) provide suggestions to users according to multiple (and possibly conflicting) goals. When a system optimizes its results at the individual-user level, it tailors them on a user's propensity towards the different objectives. Hence, the capability to understand users' fine-grained needs towards each goal is crucial. In this paper, we present the results of a user study in which we monitored the way users interacted with recommended items, as well as their self-proclaimed propensities towards relevance, novelty, and diversity objectives. The study was divided into several sessions, where users evaluated recommendation lists originating from a relevance-only single-objective baseline as well as MORS. We show that, despite MORS-based recommendations attracting fewer selections, their presence in the early sessions are crucial for users' satisfaction in the later stages. Surprisingly, the self-proclaimed willingness of users to interact with novel and diverse items is not always reflected in the recommendations they accept. Post-study questionnaires provide insights on how to deal with this matter, suggesting that MORS-based results should be accompanied by elements that allow users to understand the recommendations, so as to facilitate the choice of whether a recommendation should be accepted or not. Detailed study results are available at https://bit.ly/looks-can-be-deceiving-repo.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th ACM Conference on Recommender Systems
ISBN
979-8-4007-0241-9
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
912-918
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Singapore, Singapore
Datum konání akce
18. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—