Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468878" target="_blank" >RIV/00216208:11320/23:10468878 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3604915.3608848" target="_blank" >https://doi.org/10.1145/3604915.3608848</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3604915.3608848" target="_blank" >10.1145/3604915.3608848</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations

  • Popis výsledku v původním jazyce

    Multi-objective recommender systems (MORS) provide suggestions to users according to multiple (and possibly conflicting) goals. When a system optimizes its results at the individual-user level, it tailors them on a user&apos;s propensity towards the different objectives. Hence, the capability to understand users&apos; fine-grained needs towards each goal is crucial. In this paper, we present the results of a user study in which we monitored the way users interacted with recommended items, as well as their self-proclaimed propensities towards relevance, novelty, and diversity objectives. The study was divided into several sessions, where users evaluated recommendation lists originating from a relevance-only single-objective baseline as well as MORS. We show that, despite MORS-based recommendations attracting fewer selections, their presence in the early sessions are crucial for users&apos; satisfaction in the later stages. Surprisingly, the self-proclaimed willingness of users to interact with novel and diverse items is not always reflected in the recommendations they accept. Post-study questionnaires provide insights on how to deal with this matter, suggesting that MORS-based results should be accompanied by elements that allow users to understand the recommendations, so as to facilitate the choice of whether a recommendation should be accepted or not. Detailed study results are available at https://bit.ly/looks-can-be-deceiving-repo.

  • Název v anglickém jazyce

    Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations

  • Popis výsledku anglicky

    Multi-objective recommender systems (MORS) provide suggestions to users according to multiple (and possibly conflicting) goals. When a system optimizes its results at the individual-user level, it tailors them on a user&apos;s propensity towards the different objectives. Hence, the capability to understand users&apos; fine-grained needs towards each goal is crucial. In this paper, we present the results of a user study in which we monitored the way users interacted with recommended items, as well as their self-proclaimed propensities towards relevance, novelty, and diversity objectives. The study was divided into several sessions, where users evaluated recommendation lists originating from a relevance-only single-objective baseline as well as MORS. We show that, despite MORS-based recommendations attracting fewer selections, their presence in the early sessions are crucial for users&apos; satisfaction in the later stages. Surprisingly, the self-proclaimed willingness of users to interact with novel and diverse items is not always reflected in the recommendations they accept. Post-study questionnaires provide insights on how to deal with this matter, suggesting that MORS-based results should be accompanied by elements that allow users to understand the recommendations, so as to facilitate the choice of whether a recommendation should be accepted or not. Detailed study results are available at https://bit.ly/looks-can-be-deceiving-repo.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 17th ACM Conference on Recommender Systems

  • ISBN

    979-8-4007-0241-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    912-918

  • Název nakladatele

    ACM

  • Místo vydání

    New York, NY, USA

  • Místo konání akce

    Singapore, Singapore

  • Datum konání akce

    18. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku