Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SM-RS: Single- and Multi-Objective Recommendations with Contextual Impressions and Beyond-Accuracy Propensity Scores

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494537" target="_blank" >RIV/00216208:11320/24:10494537 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3626772.3657863" target="_blank" >https://doi.org/10.1145/3626772.3657863</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3626772.3657863" target="_blank" >10.1145/3626772.3657863</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SM-RS: Single- and Multi-Objective Recommendations with Contextual Impressions and Beyond-Accuracy Propensity Scores

  • Popis výsledku v původním jazyce

    Recommender systems (RS) rely on interaction data between users and items to generate effective results. Historically, RS aimed to deliver the most consistent (i.e., accurate) items to the trained user profiles. However, the attention towards additional ( beyond-accuracy) quality criteria has increased tremendously in recent years. Both the research and applied models are being optimized for diversity, novelty, or fairness, to name a few. Naturally, the proper functioning of such optimization methods depends on the knowledge of users&apos; propensities towards interacting with recommendations having certain quality criteria. However, so far, no dataset that captures such propensities exists. To bridge this research gap, we present SM-RS (single-objective + multi-objective recommendations dataset) that links users&apos; selfdeclared propensity toward relevance, novelty, and diversity criteria with impressions and corresponding item selections. After presenting the dataset&apos;s collection procedure and basic statistics, we propose three tasks that are rarely available to conduct using existing RS datasets: impressions-aware click prediction, users&apos; propensity scores prediction, and construction of recommendations proportional to the users&apos; propensity scores. For each task, we also provide detailed evaluation procedures and competitive baselines. The dataset is available at https://osf.io/hkzje/.

  • Název v anglickém jazyce

    SM-RS: Single- and Multi-Objective Recommendations with Contextual Impressions and Beyond-Accuracy Propensity Scores

  • Popis výsledku anglicky

    Recommender systems (RS) rely on interaction data between users and items to generate effective results. Historically, RS aimed to deliver the most consistent (i.e., accurate) items to the trained user profiles. However, the attention towards additional ( beyond-accuracy) quality criteria has increased tremendously in recent years. Both the research and applied models are being optimized for diversity, novelty, or fairness, to name a few. Naturally, the proper functioning of such optimization methods depends on the knowledge of users&apos; propensities towards interacting with recommendations having certain quality criteria. However, so far, no dataset that captures such propensities exists. To bridge this research gap, we present SM-RS (single-objective + multi-objective recommendations dataset) that links users&apos; selfdeclared propensity toward relevance, novelty, and diversity criteria with impressions and corresponding item selections. After presenting the dataset&apos;s collection procedure and basic statistics, we propose three tasks that are rarely available to conduct using existing RS datasets: impressions-aware click prediction, users&apos; propensity scores prediction, and construction of recommendations proportional to the users&apos; propensity scores. For each task, we also provide detailed evaluation procedures and competitive baselines. The dataset is available at https://osf.io/hkzje/.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024

  • ISBN

    979-8-4007-0431-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    988-995

  • Název nakladatele

    ASSOC COMPUTING MACHINERY

  • Místo vydání

    NEW YORK

  • Místo konání akce

    Washington

  • Datum konání akce

    14. 7. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001273410001007