SM-RS: Single- and Multi-Objective Recommendations with Contextual Impressions and Beyond-Accuracy Propensity Scores
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494537" target="_blank" >RIV/00216208:11320/24:10494537 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3626772.3657863" target="_blank" >https://doi.org/10.1145/3626772.3657863</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3626772.3657863" target="_blank" >10.1145/3626772.3657863</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SM-RS: Single- and Multi-Objective Recommendations with Contextual Impressions and Beyond-Accuracy Propensity Scores
Popis výsledku v původním jazyce
Recommender systems (RS) rely on interaction data between users and items to generate effective results. Historically, RS aimed to deliver the most consistent (i.e., accurate) items to the trained user profiles. However, the attention towards additional ( beyond-accuracy) quality criteria has increased tremendously in recent years. Both the research and applied models are being optimized for diversity, novelty, or fairness, to name a few. Naturally, the proper functioning of such optimization methods depends on the knowledge of users' propensities towards interacting with recommendations having certain quality criteria. However, so far, no dataset that captures such propensities exists. To bridge this research gap, we present SM-RS (single-objective + multi-objective recommendations dataset) that links users' selfdeclared propensity toward relevance, novelty, and diversity criteria with impressions and corresponding item selections. After presenting the dataset's collection procedure and basic statistics, we propose three tasks that are rarely available to conduct using existing RS datasets: impressions-aware click prediction, users' propensity scores prediction, and construction of recommendations proportional to the users' propensity scores. For each task, we also provide detailed evaluation procedures and competitive baselines. The dataset is available at https://osf.io/hkzje/.
Název v anglickém jazyce
SM-RS: Single- and Multi-Objective Recommendations with Contextual Impressions and Beyond-Accuracy Propensity Scores
Popis výsledku anglicky
Recommender systems (RS) rely on interaction data between users and items to generate effective results. Historically, RS aimed to deliver the most consistent (i.e., accurate) items to the trained user profiles. However, the attention towards additional ( beyond-accuracy) quality criteria has increased tremendously in recent years. Both the research and applied models are being optimized for diversity, novelty, or fairness, to name a few. Naturally, the proper functioning of such optimization methods depends on the knowledge of users' propensities towards interacting with recommendations having certain quality criteria. However, so far, no dataset that captures such propensities exists. To bridge this research gap, we present SM-RS (single-objective + multi-objective recommendations dataset) that links users' selfdeclared propensity toward relevance, novelty, and diversity criteria with impressions and corresponding item selections. After presenting the dataset's collection procedure and basic statistics, we propose three tasks that are rarely available to conduct using existing RS datasets: impressions-aware click prediction, users' propensity scores prediction, and construction of recommendations proportional to the users' propensity scores. For each task, we also provide detailed evaluation procedures and competitive baselines. The dataset is available at https://osf.io/hkzje/.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-21696S" target="_blank" >GA22-21696S: Hluboké vizuální reprezentace nestrukturovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024
ISBN
979-8-4007-0431-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
988-995
Název nakladatele
ASSOC COMPUTING MACHINERY
Místo vydání
NEW YORK
Místo konání akce
Washington
Datum konání akce
14. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001273410001007