Mitigating Hallucinations in Large Language Models via Semantic Enrichment of Prompts: Insights from BioBERT and Ontological Integration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A2UR9TZWT" target="_blank" >RIV/00216208:11320/25:2UR9TZWT - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2024.clib-1.30" target="_blank" >https://aclanthology.org/2024.clib-1.30</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mitigating Hallucinations in Large Language Models via Semantic Enrichment of Prompts: Insights from BioBERT and Ontological Integration
Popis výsledku v původním jazyce
The advent of Large Language Models (LLMs) has been transformative for natural language processing, yet their tendency to produce “hallucinations”—outputs that are factually incorrect or entirely fabricated— remains a significant hurdle. This paper introduces a proactive methodology for reducing hallucinations by strategically enriching LLM prompts. This involves identifying key entities and contextual cues from varied domains and integrating this information into the LLM prompts to guide the model towards more accurate and relevant responses. Leveraging examples from BioBERT for biomedical entity recognition and ChEBI for chemical ontology, we illustrate a broader approach that encompasses semantic prompt enrichment as a versatile tool for enhancing LLM output accuracy. By examining the potential of semantic and ontological enrichment in diverse contexts, we aim to present a scalable strategy for improving the reliability of AI-generated content, thereby contributing to the ongoing efforts to refine LLMs for a wide range of applications.
Název v anglickém jazyce
Mitigating Hallucinations in Large Language Models via Semantic Enrichment of Prompts: Insights from BioBERT and Ontological Integration
Popis výsledku anglicky
The advent of Large Language Models (LLMs) has been transformative for natural language processing, yet their tendency to produce “hallucinations”—outputs that are factually incorrect or entirely fabricated— remains a significant hurdle. This paper introduces a proactive methodology for reducing hallucinations by strategically enriching LLM prompts. This involves identifying key entities and contextual cues from varied domains and integrating this information into the LLM prompts to guide the model towards more accurate and relevant responses. Leveraging examples from BioBERT for biomedical entity recognition and ChEBI for chemical ontology, we illustrate a broader approach that encompasses semantic prompt enrichment as a versatile tool for enhancing LLM output accuracy. By examining the potential of semantic and ontological enrichment in diverse contexts, we aim to present a scalable strategy for improving the reliability of AI-generated content, thereby contributing to the ongoing efforts to refine LLMs for a wide range of applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)
ISBN
—
ISSN
2367-5578
e-ISSN
—
Počet stran výsledku
5
Strana od-do
272-276
Název nakladatele
Department of Computational Linguistics, Institute for Bulgarian Language, Bulgarian Academy of Sciences
Místo vydání
—
Místo konání akce
Sofia, Bulgaria
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—