Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8SG27LRT" target="_blank" >RIV/00216208:11320/25:8SG27LRT - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205383898&doi=10.1007%2f978-3-031-70239-6_29&partnerID=40&md5=12e4b95a4af0c685857215a38298072d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205383898&doi=10.1007%2f978-3-031-70239-6_29&partnerID=40&md5=12e4b95a4af0c685857215a38298072d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70239-6_29" target="_blank" >10.1007/978-3-031-70239-6_29</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection

  • Popis výsledku v původním jazyce

    Semantic role labeling (SRL) enriches many downstream applications, e.g., machine translation, question answering, summarization, and stance/belief detection. However, building multilingual SRL models is challenging due to the scarcity of semantically annotated corpora for multiple languages. Moreover, state-of-the-art SRL projection (XSRL) based on large language models (LLMs) yields output that is riddled with spurious role labels. Remediation of such hallucinations is not straightforward due to the lack of explainability of LLMs. We show that hallucinated role labels are related to naturally occurring divergence types that interfere with initial alignments. We implement Divergence-Aware Hallucination-Remediated SRL projection (DAHRS), leveraging linguistically-informed alignment remediation followed by greedy First-Come First-Assign (FCFA) SRL projection. DAHRS improves the accuracy of SRL projection without additional transformer-based machinery, beating XSRL in both human and automatic comparisons, and advancing beyond headwords to accommodate phrase-level SRL projection (e.g., EN-FR, EN-ES). Using CoNLL-2009 as our ground truth, we achieve a higher word-level F1 over XSRL: 87.6% vs. 77.3% (EN-FR) and 89.0% vs. 82.7% (EN-ES). Human phrase-level assessments yield 89.1% (EN-FR) and 91.0% (EN-ES). We also define a divergence metric to adapt our approach to other language pairs (e.g., English-Tagalog). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

  • Název v anglickém jazyce

    DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection

  • Popis výsledku anglicky

    Semantic role labeling (SRL) enriches many downstream applications, e.g., machine translation, question answering, summarization, and stance/belief detection. However, building multilingual SRL models is challenging due to the scarcity of semantically annotated corpora for multiple languages. Moreover, state-of-the-art SRL projection (XSRL) based on large language models (LLMs) yields output that is riddled with spurious role labels. Remediation of such hallucinations is not straightforward due to the lack of explainability of LLMs. We show that hallucinated role labels are related to naturally occurring divergence types that interfere with initial alignments. We implement Divergence-Aware Hallucination-Remediated SRL projection (DAHRS), leveraging linguistically-informed alignment remediation followed by greedy First-Come First-Assign (FCFA) SRL projection. DAHRS improves the accuracy of SRL projection without additional transformer-based machinery, beating XSRL in both human and automatic comparisons, and advancing beyond headwords to accommodate phrase-level SRL projection (e.g., EN-FR, EN-ES). Using CoNLL-2009 as our ground truth, we achieve a higher word-level F1 over XSRL: 87.6% vs. 77.3% (EN-FR) and 89.0% vs. 82.7% (EN-ES). Human phrase-level assessments yield 89.1% (EN-FR) and 91.0% (EN-ES). We also define a divergence metric to adapt our approach to other language pairs (e.g., English-Tagalog). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lect. Notes Comput. Sci.

  • ISBN

    978-303170238-9

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    16

  • Strana od-do

    423-438

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

  • Místo konání akce

    Turin

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku