DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8SG27LRT" target="_blank" >RIV/00216208:11320/25:8SG27LRT - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205383898&doi=10.1007%2f978-3-031-70239-6_29&partnerID=40&md5=12e4b95a4af0c685857215a38298072d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205383898&doi=10.1007%2f978-3-031-70239-6_29&partnerID=40&md5=12e4b95a4af0c685857215a38298072d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70239-6_29" target="_blank" >10.1007/978-3-031-70239-6_29</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection
Popis výsledku v původním jazyce
Semantic role labeling (SRL) enriches many downstream applications, e.g., machine translation, question answering, summarization, and stance/belief detection. However, building multilingual SRL models is challenging due to the scarcity of semantically annotated corpora for multiple languages. Moreover, state-of-the-art SRL projection (XSRL) based on large language models (LLMs) yields output that is riddled with spurious role labels. Remediation of such hallucinations is not straightforward due to the lack of explainability of LLMs. We show that hallucinated role labels are related to naturally occurring divergence types that interfere with initial alignments. We implement Divergence-Aware Hallucination-Remediated SRL projection (DAHRS), leveraging linguistically-informed alignment remediation followed by greedy First-Come First-Assign (FCFA) SRL projection. DAHRS improves the accuracy of SRL projection without additional transformer-based machinery, beating XSRL in both human and automatic comparisons, and advancing beyond headwords to accommodate phrase-level SRL projection (e.g., EN-FR, EN-ES). Using CoNLL-2009 as our ground truth, we achieve a higher word-level F1 over XSRL: 87.6% vs. 77.3% (EN-FR) and 89.0% vs. 82.7% (EN-ES). Human phrase-level assessments yield 89.1% (EN-FR) and 91.0% (EN-ES). We also define a divergence metric to adapt our approach to other language pairs (e.g., English-Tagalog). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Název v anglickém jazyce
DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection
Popis výsledku anglicky
Semantic role labeling (SRL) enriches many downstream applications, e.g., machine translation, question answering, summarization, and stance/belief detection. However, building multilingual SRL models is challenging due to the scarcity of semantically annotated corpora for multiple languages. Moreover, state-of-the-art SRL projection (XSRL) based on large language models (LLMs) yields output that is riddled with spurious role labels. Remediation of such hallucinations is not straightforward due to the lack of explainability of LLMs. We show that hallucinated role labels are related to naturally occurring divergence types that interfere with initial alignments. We implement Divergence-Aware Hallucination-Remediated SRL projection (DAHRS), leveraging linguistically-informed alignment remediation followed by greedy First-Come First-Assign (FCFA) SRL projection. DAHRS improves the accuracy of SRL projection without additional transformer-based machinery, beating XSRL in both human and automatic comparisons, and advancing beyond headwords to accommodate phrase-level SRL projection (e.g., EN-FR, EN-ES). Using CoNLL-2009 as our ground truth, we achieve a higher word-level F1 over XSRL: 87.6% vs. 77.3% (EN-FR) and 89.0% vs. 82.7% (EN-ES). Human phrase-level assessments yield 89.1% (EN-FR) and 91.0% (EN-ES). We also define a divergence metric to adapt our approach to other language pairs (e.g., English-Tagalog). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lect. Notes Comput. Sci.
ISBN
978-303170238-9
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
16
Strana od-do
423-438
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
—
Místo konání akce
Turin
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—