Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ontology-based framework for a multi-domain spoken dialogue system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A3639L9KE" target="_blank" >RIV/00216208:11320/25:3639L9KE - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049565494&doi=10.1007%2fs12652-017-0625-y&partnerID=40&md5=482bbdfda1342acd0c88aff9900af098" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049565494&doi=10.1007%2fs12652-017-0625-y&partnerID=40&md5=482bbdfda1342acd0c88aff9900af098</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12652-017-0625-y" target="_blank" >10.1007/s12652-017-0625-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ontology-based framework for a multi-domain spoken dialogue system

  • Popis výsledku v původním jazyce

    Multi-domain spoken dialogue is a challenging field where the objective of the most proposed ideas is to mimic the human–human dialogue. This paper proposes to tackle the domain selection problem in the context of multi-domain spoken dialogue as a set theory problem to resolve. First, we built each dialogue domain as an ontology following an architecture with some rules to respect. Second, each ontology is considered as a set and its concepts are the elements. Third, an ontology-based classifier is used to map the user sentence into a set of ontologies concepts and to generate an intersection between these concepts. Finally, a new turn analysis and domain selection algorithm is proposed to infer the intended domain from the user sentence using the intersection set and three techniques, namely Domain Rewards, Dominant Concept, and Current Domain. To evaluate the proposed approach, a corpus of 120 simulated dialogues was built to cover four application domains. In our experiment, the assessment of the system is performed by considering all possibilities of a natural verbal interaction where a changing of semantic context occurs during the dialogue. The obtained results show that the system accuracy reaches a satisfactory performance of 83.13% while the average number of turns by dialogue is 6.79. © Springer-Verlag GmbH Germany, part of Springer Nature 2017.

  • Název v anglickém jazyce

    Ontology-based framework for a multi-domain spoken dialogue system

  • Popis výsledku anglicky

    Multi-domain spoken dialogue is a challenging field where the objective of the most proposed ideas is to mimic the human–human dialogue. This paper proposes to tackle the domain selection problem in the context of multi-domain spoken dialogue as a set theory problem to resolve. First, we built each dialogue domain as an ontology following an architecture with some rules to respect. Second, each ontology is considered as a set and its concepts are the elements. Third, an ontology-based classifier is used to map the user sentence into a set of ontologies concepts and to generate an intersection between these concepts. Finally, a new turn analysis and domain selection algorithm is proposed to infer the intended domain from the user sentence using the intersection set and three techniques, namely Domain Rewards, Dominant Concept, and Current Domain. To evaluate the proposed approach, a corpus of 120 simulated dialogues was built to cover four application domains. In our experiment, the assessment of the system is performed by considering all possibilities of a natural verbal interaction where a changing of semantic context occurs during the dialogue. The obtained results show that the system accuracy reaches a satisfactory performance of 83.13% while the average number of turns by dialogue is 6.79. © Springer-Verlag GmbH Germany, part of Springer Nature 2017.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Ambient Intelligence and Humanized Computing

  • ISSN

    1868-5137

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    1543-1565

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85049565494