Ontology-based framework for a multi-domain spoken dialogue system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A3639L9KE" target="_blank" >RIV/00216208:11320/25:3639L9KE - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049565494&doi=10.1007%2fs12652-017-0625-y&partnerID=40&md5=482bbdfda1342acd0c88aff9900af098" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049565494&doi=10.1007%2fs12652-017-0625-y&partnerID=40&md5=482bbdfda1342acd0c88aff9900af098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12652-017-0625-y" target="_blank" >10.1007/s12652-017-0625-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ontology-based framework for a multi-domain spoken dialogue system
Popis výsledku v původním jazyce
Multi-domain spoken dialogue is a challenging field where the objective of the most proposed ideas is to mimic the human–human dialogue. This paper proposes to tackle the domain selection problem in the context of multi-domain spoken dialogue as a set theory problem to resolve. First, we built each dialogue domain as an ontology following an architecture with some rules to respect. Second, each ontology is considered as a set and its concepts are the elements. Third, an ontology-based classifier is used to map the user sentence into a set of ontologies concepts and to generate an intersection between these concepts. Finally, a new turn analysis and domain selection algorithm is proposed to infer the intended domain from the user sentence using the intersection set and three techniques, namely Domain Rewards, Dominant Concept, and Current Domain. To evaluate the proposed approach, a corpus of 120 simulated dialogues was built to cover four application domains. In our experiment, the assessment of the system is performed by considering all possibilities of a natural verbal interaction where a changing of semantic context occurs during the dialogue. The obtained results show that the system accuracy reaches a satisfactory performance of 83.13% while the average number of turns by dialogue is 6.79. © Springer-Verlag GmbH Germany, part of Springer Nature 2017.
Název v anglickém jazyce
Ontology-based framework for a multi-domain spoken dialogue system
Popis výsledku anglicky
Multi-domain spoken dialogue is a challenging field where the objective of the most proposed ideas is to mimic the human–human dialogue. This paper proposes to tackle the domain selection problem in the context of multi-domain spoken dialogue as a set theory problem to resolve. First, we built each dialogue domain as an ontology following an architecture with some rules to respect. Second, each ontology is considered as a set and its concepts are the elements. Third, an ontology-based classifier is used to map the user sentence into a set of ontologies concepts and to generate an intersection between these concepts. Finally, a new turn analysis and domain selection algorithm is proposed to infer the intended domain from the user sentence using the intersection set and three techniques, namely Domain Rewards, Dominant Concept, and Current Domain. To evaluate the proposed approach, a corpus of 120 simulated dialogues was built to cover four application domains. In our experiment, the assessment of the system is performed by considering all possibilities of a natural verbal interaction where a changing of semantic context occurs during the dialogue. The obtained results show that the system accuracy reaches a satisfactory performance of 83.13% while the average number of turns by dialogue is 6.79. © Springer-Verlag GmbH Germany, part of Springer Nature 2017.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Ambient Intelligence and Humanized Computing
ISSN
1868-5137
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1543-1565
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85049565494