Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FLAT: Fusing layer representations for more efficient transfer learning in NLP

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A43DLRMEI" target="_blank" >RIV/00216208:11320/25:43DLRMEI - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201454475&doi=10.1016%2fj.neunet.2024.106631&partnerID=40&md5=59df237eda2be43d2cf0098d7d542033" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201454475&doi=10.1016%2fj.neunet.2024.106631&partnerID=40&md5=59df237eda2be43d2cf0098d7d542033</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neunet.2024.106631" target="_blank" >10.1016/j.neunet.2024.106631</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FLAT: Fusing layer representations for more efficient transfer learning in NLP

  • Popis výsledku v původním jazyce

    Parameter efficient transfer learning (PETL) methods provide an efficient alternative for fine-tuning. However, typical PETL methods inject the same structures to all Pre-trained Language Model (PLM) layers and only use the final hidden states for downstream tasks, regardless of the knowledge diversity across PLM layers. Additionally, the backpropagation path of existing PETL methods still passes through the frozen PLM during training, which is computational and memory inefficient. In this paper, we propose FLAT, a generic PETL method that explicitly and individually combines knowledge across all PLM layers based on the tokens to perform a better transferring. FLAT considers the backbone PLM as a feature extractor and combines the features in a side-network, hence the backpropagation does not involve the PLM, which results in much less memory requirement than previous methods. The results on the GLUE benchmark show that FLAT outperforms other tuning techniques in the low-resource scenarios and achieves on-par performance in the high-resource scenarios with only 0.53% trainable parameters per task and 3.2× less GPU memory usagewith BERTbase. Besides, further ablation study is conducted to reveal that the proposed fusion layer effectively combines knowledge from PLM and helps the classifier to exploit the PLM knowledge to downstream tasks. We will release our code for better reproducibility.

  • Název v anglickém jazyce

    FLAT: Fusing layer representations for more efficient transfer learning in NLP

  • Popis výsledku anglicky

    Parameter efficient transfer learning (PETL) methods provide an efficient alternative for fine-tuning. However, typical PETL methods inject the same structures to all Pre-trained Language Model (PLM) layers and only use the final hidden states for downstream tasks, regardless of the knowledge diversity across PLM layers. Additionally, the backpropagation path of existing PETL methods still passes through the frozen PLM during training, which is computational and memory inefficient. In this paper, we propose FLAT, a generic PETL method that explicitly and individually combines knowledge across all PLM layers based on the tokens to perform a better transferring. FLAT considers the backbone PLM as a feature extractor and combines the features in a side-network, hence the backpropagation does not involve the PLM, which results in much less memory requirement than previous methods. The results on the GLUE benchmark show that FLAT outperforms other tuning techniques in the low-resource scenarios and achieves on-par performance in the high-resource scenarios with only 0.53% trainable parameters per task and 3.2× less GPU memory usagewith BERTbase. Besides, further ablation study is conducted to reveal that the proposed fusion layer effectively combines knowledge from PLM and helps the classifier to exploit the PLM knowledge to downstream tasks. We will release our code for better reproducibility.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Networks

  • ISSN

    0893-6080

  • e-ISSN

  • Svazek periodika

    179

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85201454475