What has LeBenchmark Learnt about French Syntax?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A4CHAY9HQ" target="_blank" >RIV/00216208:11320/25:4CHAY9HQ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195984103&partnerID=40&md5=dca83ca853a55ca15227c360045bc677" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195984103&partnerID=40&md5=dca83ca853a55ca15227c360045bc677</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What has LeBenchmark Learnt about French Syntax?
Popis výsledku v původním jazyce
The paper reports on a series of experiments aiming at probing LeBenchmark, a pretrained acoustic model trained on 7k hours of spoken French, for syntactic information. Pretrained acoustic models are increasingly used for downstream speech tasks such as automatic speech recognition, speech translation, spoken language understanding or speech parsing. They are trained on very low level information (the raw speech signal), and do not have explicit lexical knowledge. Despite that, they obtained reasonable results on tasks that requires higher level linguistic knowledge. As a result, an emerging question is whether these models encode syntactic information. We probe each representation layer of LeBenchmark for syntax, using the Orféo treebank, and observe that it has learnt some syntactic information. Our results show that syntactic information is more easily extractable from the middle layers of the network, after which a very sharp decrease is observed. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
What has LeBenchmark Learnt about French Syntax?
Popis výsledku anglicky
The paper reports on a series of experiments aiming at probing LeBenchmark, a pretrained acoustic model trained on 7k hours of spoken French, for syntactic information. Pretrained acoustic models are increasingly used for downstream speech tasks such as automatic speech recognition, speech translation, spoken language understanding or speech parsing. They are trained on very low level information (the raw speech signal), and do not have explicit lexical knowledge. Despite that, they obtained reasonable results on tasks that requires higher level linguistic knowledge. As a result, an emerging question is whether these models encode syntactic information. We probe each representation layer of LeBenchmark for syntax, using the Orféo treebank, and observe that it has learnt some syntactic information. Our results show that syntactic information is more easily extractable from the middle layers of the network, after which a very sharp decrease is observed. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
17493-17499
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—