Modeling Diachronic Change in English Scientific Writing over 300+ Years with Transformer-based Language Model Surprisal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A6RCGJHPY" target="_blank" >RIV/00216208:11320/25:6RCGJHPY - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198668184&partnerID=40&md5=f39b9e4e7762bbbc6b4fea9cd5212861" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198668184&partnerID=40&md5=f39b9e4e7762bbbc6b4fea9cd5212861</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling Diachronic Change in English Scientific Writing over 300+ Years with Transformer-based Language Model Surprisal
Popis výsledku v původním jazyce
This study presents an analysis of diachronic linguistic changes in English scientific writing, utilizing surprisal from transformer-based language models. Unlike traditional n-gram models, transformer-based models are potentially better at capturing nuanced linguistic changes such as long-range dependencies by considering variable context sizes. However, to create diachronically comparable language models there are several challenges with historical data, notably an exponential increase in no. of texts, tokens per text and vocabulary size over time. We address these by using a shared vocabulary and employing a robust training strategy that includes initial uniform sampling from the corpus and continuing pre-training on specific temporal segments. Our empirical analysis highlights the predictive power of surprisal from transformer-based models, particularly in analyzing complex linguistic structures like relative clauses. The models’ broader contextual awareness and the inclusion of dependency length annotations contribute to a more intricate understanding of communicative efficiency. While our focus is on scientific English, our approach can be applied to other low-resource scenarios. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
Modeling Diachronic Change in English Scientific Writing over 300+ Years with Transformer-based Language Model Surprisal
Popis výsledku anglicky
This study presents an analysis of diachronic linguistic changes in English scientific writing, utilizing surprisal from transformer-based language models. Unlike traditional n-gram models, transformer-based models are potentially better at capturing nuanced linguistic changes such as long-range dependencies by considering variable context sizes. However, to create diachronically comparable language models there are several challenges with historical data, notably an exponential increase in no. of texts, tokens per text and vocabulary size over time. We address these by using a shared vocabulary and employing a robust training strategy that includes initial uniform sampling from the corpus and continuing pre-training on specific temporal segments. Our empirical analysis highlights the predictive power of surprisal from transformer-based models, particularly in analyzing complex linguistic structures like relative clauses. The models’ broader contextual awareness and the inclusion of dependency length annotations contribute to a more intricate understanding of communicative efficiency. While our focus is on scientific English, our approach can be applied to other low-resource scenarios. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Workshop Build. Using Comp. Corpora, BUCC LREC-COLING - Proc.
ISBN
978-249381431-9
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
12-23
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—