AOQAS: Ontology Based Question Answering System for Agricultural Domain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8995PN5X" target="_blank" >RIV/00216208:11320/25:8995PN5X - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200978597&partnerID=40&md5=f2f6d3a2c788c5a2c7cdd28da116a82c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200978597&partnerID=40&md5=f2f6d3a2c788c5a2c7cdd28da116a82c</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AOQAS: Ontology Based Question Answering System for Agricultural Domain
Popis výsledku v původním jazyce
Agriculture is an indispensable sector for human community that has been transformed by technological innovations. The data handling with information extraction is one of the areas that is benefited by the advancements in information technology. The presented research work aims to develop a question answering system (QAS) for improving the information retrieval from the agricultural text documents. The proposed Agriculture domain Ontology based QAS (AOQAS) processes the given agricultural text documents and constructs it to a knowledge representation called ontology. The domain based ontology is created using the Bidirectional Encoder Representations from Transformers model (BERT model) with Regular Expressions (RE) for withdrawing domain terms and the Bidirectional Long Short Term Memory model (BiLSTM) with RE for relationship extraction between the agricultural terms. From the developed ontology, the answers for the input query are extracted and validated using Natural Language Processing (NLP) techniques and the deep learning model. The proposed AOQAS shows an accuracy and recall of 98.47% and 98.26%. The outcomes of AOQAS shows better performance when it is evaluated against the current systems. © Cerebration Science Publishing.
Název v anglickém jazyce
AOQAS: Ontology Based Question Answering System for Agricultural Domain
Popis výsledku anglicky
Agriculture is an indispensable sector for human community that has been transformed by technological innovations. The data handling with information extraction is one of the areas that is benefited by the advancements in information technology. The presented research work aims to develop a question answering system (QAS) for improving the information retrieval from the agricultural text documents. The proposed Agriculture domain Ontology based QAS (AOQAS) processes the given agricultural text documents and constructs it to a knowledge representation called ontology. The domain based ontology is created using the Bidirectional Encoder Representations from Transformers model (BERT model) with Regular Expressions (RE) for withdrawing domain terms and the Bidirectional Long Short Term Memory model (BiLSTM) with RE for relationship extraction between the agricultural terms. From the developed ontology, the answers for the input query are extracted and validated using Natural Language Processing (NLP) techniques and the deep learning model. The proposed AOQAS shows an accuracy and recall of 98.47% and 98.26%. The outcomes of AOQAS shows better performance when it is evaluated against the current systems. © Cerebration Science Publishing.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computer Information Systems and Industrial Management Applications
ISSN
2150-7988
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
230-245
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85200978597