Multilingual Models for ASR in Chibchan Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A9JRLFHVX" target="_blank" >RIV/00216208:11320/25:9JRLFHVX - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200248556&partnerID=40&md5=4ce05a16cb985e771879e88dc9759f2c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200248556&partnerID=40&md5=4ce05a16cb985e771879e88dc9759f2c</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multilingual Models for ASR in Chibchan Languages
Popis výsledku v původním jazyce
We present experiments on Automatic Speech Recognition (ASR) for Bribri and Cabécar, two languages from the Chibchan family. We finetune four ASR algorithms (Wav2Vec2, Whisper, MMS & WavLM) to create monolingual models, with the Wav2Vec2 model demonstrating the best performance. We then proceed to use Wav2Vec2 for (1) experiments on training joint and transfer learning models for both languages, and (2) an analysis of the errors, with a focus on the transcription of tone. Results show effective transfer learning for both Bribri and Cabécar, but especially for Bribri. A post-processing spell checking step further reduced character and word error rates. As for the errors, tone is where the Bribri models make the most errors, whereas the simpler tonal system of Cabécar is better transcribed by the model. Our work contributes to developing better ASR technology, an important tool that could facilitate transcription, one of the major bottlenecks in language documentation efforts. Our work also assesses how existing pre-trained models and algorithms perform for genuine extremely low resource-languages. ©2024 Association for Computational Linguistics.
Název v anglickém jazyce
Multilingual Models for ASR in Chibchan Languages
Popis výsledku anglicky
We present experiments on Automatic Speech Recognition (ASR) for Bribri and Cabécar, two languages from the Chibchan family. We finetune four ASR algorithms (Wav2Vec2, Whisper, MMS & WavLM) to create monolingual models, with the Wav2Vec2 model demonstrating the best performance. We then proceed to use Wav2Vec2 for (1) experiments on training joint and transfer learning models for both languages, and (2) an analysis of the errors, with a focus on the transcription of tone. Results show effective transfer learning for both Bribri and Cabécar, but especially for Bribri. A post-processing spell checking step further reduced character and word error rates. As for the errors, tone is where the Bribri models make the most errors, whereas the simpler tonal system of Cabécar is better transcribed by the model. Our work contributes to developing better ASR technology, an important tool that could facilitate transcription, one of the major bottlenecks in language documentation efforts. Our work also assesses how existing pre-trained models and algorithms perform for genuine extremely low resource-languages. ©2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Conf. North American Chapter Assoc. Comput. Linguist.: Hum. Lang. Technol., NAACL
ISBN
979-889176114-8
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
8513-8527
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Mexico City, Mexico
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—