Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Neural Network Acoustic Model Baseline for Character-Level Transcription of Naturally Spoken Czech Language

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43921328" target="_blank" >RIV/60461373:22340/20:43921328 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www-scopus-com.ezproxy.vscht.cz/record/display.uri?eid=2-s2.0-85098194179&origin=resultslist&sort=plf-f&src=s&st1=&st2=&sid=456c730de23256c12af0d4a383bd2de8&sot=b&sdt=b&sl=128&s=TITLE-ABS-KEY+%28Deep+Neural+Network+Acoustic+Model+Baseline+for+Character-Level+Transcription+of+Naturally+Spoken+Czech+Language%29&relpos=0&citeCnt=0&searchTerm=" target="_blank" >https://www-scopus-com.ezproxy.vscht.cz/record/display.uri?eid=2-s2.0-85098194179&origin=resultslist&sort=plf-f&src=s&st1=&st2=&sid=456c730de23256c12af0d4a383bd2de8&sot=b&sdt=b&sl=128&s=TITLE-ABS-KEY+%28Deep+Neural+Network+Acoustic+Model+Baseline+for+Character-Level+Transcription+of+Naturally+Spoken+Czech+Language%29&relpos=0&citeCnt=0&searchTerm=</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-63322-6_14" target="_blank" >10.1007/978-3-030-63322-6_14</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Neural Network Acoustic Model Baseline for Character-Level Transcription of Naturally Spoken Czech Language

  • Popis výsledku v původním jazyce

    Heavy portion of previous work in automated speech recognition (ASR) conducts their research and provides results exclusively for English spoken language, for which there are many ready-to-use datasets publicly available. ASR research for other less widely utilized languages suffers from the lack of high-quality speech datasets and insufficient experimental results to compare with new research. In this article, we aim to remedy this problem for the Czech language by proposing Deep Neural Network-based Acoustic Model (AM) architecture as well as providing experimental results for character-level transcription of naturally spoken utterances. The AM architecture was developed by utilizing working solutions from modern English language ASR research and further tailored for better performance on Czech language datasets by conducting a comparative experimental study for several versions of the AM. The models were trained on up to 331 h of naturally spoken Czech language utterances from the PDTSC 1.0 and ORAL2013 datasets and validated on a 5.5-hour excerpt from the PDTSC 1.0 dataset. The results show that our final AM architecture can reach an average of 26.6 % transcript character error rate (CER) on the validation set when trained with all of the available training data. We believe that the final AM architecture presented in this paper and the experimental results can serve as a baseline for further Czech language ASR research.

  • Název v anglickém jazyce

    Deep Neural Network Acoustic Model Baseline for Character-Level Transcription of Naturally Spoken Czech Language

  • Popis výsledku anglicky

    Heavy portion of previous work in automated speech recognition (ASR) conducts their research and provides results exclusively for English spoken language, for which there are many ready-to-use datasets publicly available. ASR research for other less widely utilized languages suffers from the lack of high-quality speech datasets and insufficient experimental results to compare with new research. In this article, we aim to remedy this problem for the Czech language by proposing Deep Neural Network-based Acoustic Model (AM) architecture as well as providing experimental results for character-level transcription of naturally spoken utterances. The AM architecture was developed by utilizing working solutions from modern English language ASR research and further tailored for better performance on Czech language datasets by conducting a comparative experimental study for several versions of the AM. The models were trained on up to 331 h of naturally spoken Czech language utterances from the PDTSC 1.0 and ORAL2013 datasets and validated on a 5.5-hour excerpt from the PDTSC 1.0 dataset. The results show that our final AM architecture can reach an average of 26.6 % transcript character error rate (CER) on the validation set when trained with all of the available training data. We believe that the final AM architecture presented in this paper and the experimental results can serve as a baseline for further Czech language ASR research.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    4th Computational Methods in Systems and Software, CoMeSySo 2020

  • ISBN

    978-3-030-63321-9

  • ISSN

    2194-5357

  • e-ISSN

  • Počet stran výsledku

    16

  • Strana od-do

    170-185

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Vsetín

  • Datum konání akce

    14. 10. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku