Deep Neural Network Acoustic Model Baseline for Character-Level Transcription of Naturally Spoken Czech Language
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43921328" target="_blank" >RIV/60461373:22340/20:43921328 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-scopus-com.ezproxy.vscht.cz/record/display.uri?eid=2-s2.0-85098194179&origin=resultslist&sort=plf-f&src=s&st1=&st2=&sid=456c730de23256c12af0d4a383bd2de8&sot=b&sdt=b&sl=128&s=TITLE-ABS-KEY+%28Deep+Neural+Network+Acoustic+Model+Baseline+for+Character-Level+Transcription+of+Naturally+Spoken+Czech+Language%29&relpos=0&citeCnt=0&searchTerm=" target="_blank" >https://www-scopus-com.ezproxy.vscht.cz/record/display.uri?eid=2-s2.0-85098194179&origin=resultslist&sort=plf-f&src=s&st1=&st2=&sid=456c730de23256c12af0d4a383bd2de8&sot=b&sdt=b&sl=128&s=TITLE-ABS-KEY+%28Deep+Neural+Network+Acoustic+Model+Baseline+for+Character-Level+Transcription+of+Naturally+Spoken+Czech+Language%29&relpos=0&citeCnt=0&searchTerm=</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63322-6_14" target="_blank" >10.1007/978-3-030-63322-6_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Neural Network Acoustic Model Baseline for Character-Level Transcription of Naturally Spoken Czech Language
Popis výsledku v původním jazyce
Heavy portion of previous work in automated speech recognition (ASR) conducts their research and provides results exclusively for English spoken language, for which there are many ready-to-use datasets publicly available. ASR research for other less widely utilized languages suffers from the lack of high-quality speech datasets and insufficient experimental results to compare with new research. In this article, we aim to remedy this problem for the Czech language by proposing Deep Neural Network-based Acoustic Model (AM) architecture as well as providing experimental results for character-level transcription of naturally spoken utterances. The AM architecture was developed by utilizing working solutions from modern English language ASR research and further tailored for better performance on Czech language datasets by conducting a comparative experimental study for several versions of the AM. The models were trained on up to 331 h of naturally spoken Czech language utterances from the PDTSC 1.0 and ORAL2013 datasets and validated on a 5.5-hour excerpt from the PDTSC 1.0 dataset. The results show that our final AM architecture can reach an average of 26.6 % transcript character error rate (CER) on the validation set when trained with all of the available training data. We believe that the final AM architecture presented in this paper and the experimental results can serve as a baseline for further Czech language ASR research.
Název v anglickém jazyce
Deep Neural Network Acoustic Model Baseline for Character-Level Transcription of Naturally Spoken Czech Language
Popis výsledku anglicky
Heavy portion of previous work in automated speech recognition (ASR) conducts their research and provides results exclusively for English spoken language, for which there are many ready-to-use datasets publicly available. ASR research for other less widely utilized languages suffers from the lack of high-quality speech datasets and insufficient experimental results to compare with new research. In this article, we aim to remedy this problem for the Czech language by proposing Deep Neural Network-based Acoustic Model (AM) architecture as well as providing experimental results for character-level transcription of naturally spoken utterances. The AM architecture was developed by utilizing working solutions from modern English language ASR research and further tailored for better performance on Czech language datasets by conducting a comparative experimental study for several versions of the AM. The models were trained on up to 331 h of naturally spoken Czech language utterances from the PDTSC 1.0 and ORAL2013 datasets and validated on a 5.5-hour excerpt from the PDTSC 1.0 dataset. The results show that our final AM architecture can reach an average of 26.6 % transcript character error rate (CER) on the validation set when trained with all of the available training data. We believe that the final AM architecture presented in this paper and the experimental results can serve as a baseline for further Czech language ASR research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
4th Computational Methods in Systems and Software, CoMeSySo 2020
ISBN
978-3-030-63321-9
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
16
Strana od-do
170-185
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Vsetín
Datum konání akce
14. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—