Transformer-Based Automatic Speech Recognition of Formal and Colloquial Czech in MALACH Project
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965696" target="_blank" >RIV/49777513:23520/22:43965696 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-16270-1_25" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16270-1_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16270-1_25" target="_blank" >10.1007/978-3-031-16270-1_25</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transformer-Based Automatic Speech Recognition of Formal and Colloquial Czech in MALACH Project
Popis výsledku v původním jazyce
Czech is a very specific language due to its large differences between the formal and the colloquial form of speech. While the formal (written) form is used mainly in official documents, literature, and public speeches, the colloquial (spoken) form is used widely among people in casual speeches. This gap introduces serious problems for ASR systems, especially when training or evaluating ASR models on datasets containing a lot of colloquial speech, such as the MALACH project. In this paper, we are addressing this problem in the light of a new paradigm in end-to-end ASR systems – recently introduced self-supervised audio Transformers. Specifically, we are investigating the influence of colloquial speech on the performance of Wav2Vec 2.0 models and their ability to transcribe colloquial speech directly into formal transcripts. We are presenting results with both formal and colloquial forms in the training transcripts, language models, and evaluation transcripts.
Název v anglickém jazyce
Transformer-Based Automatic Speech Recognition of Formal and Colloquial Czech in MALACH Project
Popis výsledku anglicky
Czech is a very specific language due to its large differences between the formal and the colloquial form of speech. While the formal (written) form is used mainly in official documents, literature, and public speeches, the colloquial (spoken) form is used widely among people in casual speeches. This gap introduces serious problems for ASR systems, especially when training or evaluating ASR models on datasets containing a lot of colloquial speech, such as the MALACH project. In this paper, we are addressing this problem in the light of a new paradigm in end-to-end ASR systems – recently introduced self-supervised audio Transformers. Specifically, we are investigating the influence of colloquial speech on the performance of Wav2Vec 2.0 models and their ability to transcribe colloquial speech directly into formal transcripts. We are presenting results with both formal and colloquial forms in the training transcripts, language models, and evaluation transcripts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Text, Speech, and Dialogue 25th International Conference, TSD 2022, Brno, Czech Republic, September 6–9, 2022, Proceedings
ISBN
978-3-031-16269-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
301-312
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Brno, Czech Republic
Datum konání akce
6. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—