Multi Task Learning Based Shallow Parsing for Indian Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AACB8YER8" target="_blank" >RIV/00216208:11320/25:ACB8YER8 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204884735&doi=10.1145%2f3664620&partnerID=40&md5=7943cf41bdc765d7ece1f5291ac66d7d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204884735&doi=10.1145%2f3664620&partnerID=40&md5=7943cf41bdc765d7ece1f5291ac66d7d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3664620" target="_blank" >10.1145/3664620</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi Task Learning Based Shallow Parsing for Indian Languages
Popis výsledku v původním jazyce
Shallow Parsing is an important step for many Natural Language Processing tasks. Although shallow parsing has a rich history for resource rich languages, it is not the case for most Indian languages. Shallow Parsing consists of POS Tagging and Chunking. Our study focuses on developing shallow parsers for Indian languages. As part of shallow parsing, we included morph analysis as well. For the study, we first consolidated available shallow parsing corpora for seven Indian Languages (Hindi, Kannada, Bangla, Malayalam, Marathi, Urdu, Telugu) for which treebanks are publicly available. We then trained models to achieve state-of-the-art performance for shallow parsing in these languages for multiple domains. Since analyzing the performance of model predictions at sentence level is more realistic, we report the performance of these shallow parsers not only at the token level, but also at the sentence level. We also present machine learning techniques for multi-task shallow parsing. Our experiments show that fine-tuned contextual embedding with multi-task learning improves the performance of multiple as well as individual shallow parsing tasks across different domains. We show the transfer learning capability of these models by creating shallow parsers (only with POS and Chunk) for Gujarati, Odia, and Punjabi for which no treebanks are available. As a part of this work, we will be releasing the Indian Languages Shallow Linguistic (ILSL) benchmarks for 10 Indian languages, including both the major language families Indo-Aryan and Dravidian as common building blocks that can be used to evaluate and understand various linguistic phenomena found in Indian languages and how well newer approaches can tackle them.
Název v anglickém jazyce
Multi Task Learning Based Shallow Parsing for Indian Languages
Popis výsledku anglicky
Shallow Parsing is an important step for many Natural Language Processing tasks. Although shallow parsing has a rich history for resource rich languages, it is not the case for most Indian languages. Shallow Parsing consists of POS Tagging and Chunking. Our study focuses on developing shallow parsers for Indian languages. As part of shallow parsing, we included morph analysis as well. For the study, we first consolidated available shallow parsing corpora for seven Indian Languages (Hindi, Kannada, Bangla, Malayalam, Marathi, Urdu, Telugu) for which treebanks are publicly available. We then trained models to achieve state-of-the-art performance for shallow parsing in these languages for multiple domains. Since analyzing the performance of model predictions at sentence level is more realistic, we report the performance of these shallow parsers not only at the token level, but also at the sentence level. We also present machine learning techniques for multi-task shallow parsing. Our experiments show that fine-tuned contextual embedding with multi-task learning improves the performance of multiple as well as individual shallow parsing tasks across different domains. We show the transfer learning capability of these models by creating shallow parsers (only with POS and Chunk) for Gujarati, Odia, and Punjabi for which no treebanks are available. As a part of this work, we will be releasing the Indian Languages Shallow Linguistic (ILSL) benchmarks for 10 Indian languages, including both the major language families Indo-Aryan and Dravidian as common building blocks that can be used to evaluate and understand various linguistic phenomena found in Indian languages and how well newer approaches can tackle them.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Asian and Low-Resource Language Information Processing
ISSN
2375-4699
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85204884735