Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi Task Learning Based Shallow Parsing for Indian Languages

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AACB8YER8" target="_blank" >RIV/00216208:11320/25:ACB8YER8 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204884735&doi=10.1145%2f3664620&partnerID=40&md5=7943cf41bdc765d7ece1f5291ac66d7d" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204884735&doi=10.1145%2f3664620&partnerID=40&md5=7943cf41bdc765d7ece1f5291ac66d7d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3664620" target="_blank" >10.1145/3664620</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi Task Learning Based Shallow Parsing for Indian Languages

  • Popis výsledku v původním jazyce

    Shallow Parsing is an important step for many Natural Language Processing tasks. Although shallow parsing has a rich history for resource rich languages, it is not the case for most Indian languages. Shallow Parsing consists of POS Tagging and Chunking. Our study focuses on developing shallow parsers for Indian languages. As part of shallow parsing, we included morph analysis as well. For the study, we first consolidated available shallow parsing corpora for seven Indian Languages (Hindi, Kannada, Bangla, Malayalam, Marathi, Urdu, Telugu) for which treebanks are publicly available. We then trained models to achieve state-of-the-art performance for shallow parsing in these languages for multiple domains. Since analyzing the performance of model predictions at sentence level is more realistic, we report the performance of these shallow parsers not only at the token level, but also at the sentence level. We also present machine learning techniques for multi-task shallow parsing. Our experiments show that fine-tuned contextual embedding with multi-task learning improves the performance of multiple as well as individual shallow parsing tasks across different domains. We show the transfer learning capability of these models by creating shallow parsers (only with POS and Chunk) for Gujarati, Odia, and Punjabi for which no treebanks are available. As a part of this work, we will be releasing the Indian Languages Shallow Linguistic (ILSL) benchmarks for 10 Indian languages, including both the major language families Indo-Aryan and Dravidian as common building blocks that can be used to evaluate and understand various linguistic phenomena found in Indian languages and how well newer approaches can tackle them.

  • Název v anglickém jazyce

    Multi Task Learning Based Shallow Parsing for Indian Languages

  • Popis výsledku anglicky

    Shallow Parsing is an important step for many Natural Language Processing tasks. Although shallow parsing has a rich history for resource rich languages, it is not the case for most Indian languages. Shallow Parsing consists of POS Tagging and Chunking. Our study focuses on developing shallow parsers for Indian languages. As part of shallow parsing, we included morph analysis as well. For the study, we first consolidated available shallow parsing corpora for seven Indian Languages (Hindi, Kannada, Bangla, Malayalam, Marathi, Urdu, Telugu) for which treebanks are publicly available. We then trained models to achieve state-of-the-art performance for shallow parsing in these languages for multiple domains. Since analyzing the performance of model predictions at sentence level is more realistic, we report the performance of these shallow parsers not only at the token level, but also at the sentence level. We also present machine learning techniques for multi-task shallow parsing. Our experiments show that fine-tuned contextual embedding with multi-task learning improves the performance of multiple as well as individual shallow parsing tasks across different domains. We show the transfer learning capability of these models by creating shallow parsers (only with POS and Chunk) for Gujarati, Odia, and Punjabi for which no treebanks are available. As a part of this work, we will be releasing the Indian Languages Shallow Linguistic (ILSL) benchmarks for 10 Indian languages, including both the major language families Indo-Aryan and Dravidian as common building blocks that can be used to evaluate and understand various linguistic phenomena found in Indian languages and how well newer approaches can tackle them.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Asian and Low-Resource Language Information Processing

  • ISSN

    2375-4699

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85204884735