Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mitigating Data Scarcity in Semantic Parsing across Languages: the Multilingual Semantic Layer and its Dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AAR3G7CRK" target="_blank" >RIV/00216208:11320/25:AR3G7CRK - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205312109&partnerID=40&md5=f05eb79ade11970aac0d746ab2512c19" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205312109&partnerID=40&md5=f05eb79ade11970aac0d746ab2512c19</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mitigating Data Scarcity in Semantic Parsing across Languages: the Multilingual Semantic Layer and its Dataset

  • Popis výsledku v původním jazyce

    Data scarcity is a prevalent challenge in the era of Large Language Models (LLMs). The insatiable hunger of LLMs for large corpora becomes even more pronounced when dealing with non-English and low-resource languages. The issue is particularly exacerbated in Semantic Parsing (SP), i.e. the task of converting text into a formal representation. The complexity of semantic formalisms makes training human annotators and subsequent data annotation unfeasible on a large scale, especially across languages. To mitigate this, we first introduce the Multilingual Semantic Layer (MSL), a conceptual evolution of previous formalisms, which decouples from disambiguation and external inventories and simplifies the task. MSL provides the necessary tools to encode the meaning across languages, paving the way for developing a high-quality semantic parsing dataset across different languages in a semi-automatic strategy. Subsequently, we manually refine a portion of this dataset and fine-tune GPT-3.5 to propagate these refinements across the dataset. Then, we manually annotate 1,100 sentences in eleven languages, including low-resource ones. Finally, we assess our dataset's quality, showcasing the performance gap reduction across languages in Semantic Parsing. Our code and dataset are openly available at https://github.com/SapienzaNLP/MSL. © 2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Mitigating Data Scarcity in Semantic Parsing across Languages: the Multilingual Semantic Layer and its Dataset

  • Popis výsledku anglicky

    Data scarcity is a prevalent challenge in the era of Large Language Models (LLMs). The insatiable hunger of LLMs for large corpora becomes even more pronounced when dealing with non-English and low-resource languages. The issue is particularly exacerbated in Semantic Parsing (SP), i.e. the task of converting text into a formal representation. The complexity of semantic formalisms makes training human annotators and subsequent data annotation unfeasible on a large scale, especially across languages. To mitigate this, we first introduce the Multilingual Semantic Layer (MSL), a conceptual evolution of previous formalisms, which decouples from disambiguation and external inventories and simplifies the task. MSL provides the necessary tools to encode the meaning across languages, paving the way for developing a high-quality semantic parsing dataset across different languages in a semi-automatic strategy. Subsequently, we manually refine a portion of this dataset and fine-tune GPT-3.5 to propagate these refinements across the dataset. Then, we manually annotate 1,100 sentences in eleven languages, including low-resource ones. Finally, we assess our dataset's quality, showcasing the performance gap reduction across languages in Semantic Parsing. Our code and dataset are openly available at https://github.com/SapienzaNLP/MSL. © 2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proc. Annu. Meet. Assoc. Comput Linguist.

  • ISBN

    979-889176099-8

  • ISSN

    0736-587X

  • e-ISSN

  • Počet stran výsledku

    25

  • Strana od-do

    14056-14080

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Bangkok

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku