U-DepPLLaMA: Universal Dependency Parsing via Auto-regressive Large Language Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ABFCHW7L6" target="_blank" >RIV/00216208:11320/25:BFCHW7L6 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206211493&doi=10.4000%2f125nm&partnerID=40&md5=d90ffea5d474323458bc2bc032c3e7a0" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206211493&doi=10.4000%2f125nm&partnerID=40&md5=d90ffea5d474323458bc2bc032c3e7a0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4000/125nm" target="_blank" >10.4000/125nm</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
U-DepPLLaMA: Universal Dependency Parsing via Auto-regressive Large Language Models
Popis výsledku v původním jazyce
This paper investigates the rapidly advancing domain of Large Language Models (LLMs) and their growing potential in various fields. A central focus is the exploration of LLMs, e.g., LLaMA, as powerful tools for modeling and representing linguistic information, especially in the realm of syntax. We aim to evaluate the ability of these models to encode syntactic information, especially when explicitly supplied, through fine-tuning processes. Traditionally, Dependency Parsing has relied on specific techniques and dedicated architectures. Our research shifts this approach, conceptualizing it as a sequence-to-sequence task where Language Models interpret and transform syntax into bracketed structures that reflect dependency graphs. We introduce U-DepPLLaMA (Universal Dependency Parsing via auto-regressive LLMs based on LLaMA), a novel architecture optimized for multilingual, end-to-end Dependency Parsing. Our experimental evaluation, across 50 datasets in 26 languages from the Universal Dependency Treebank, shows that LLMs can be effectively trained for dependency parsing without the need for task-specific architectures. The results are on par with current state-of-the-art methods and demonstrate resilience across varying sentence complexities and lengths. © 2024 Associazione Italiana di Linguistica Computazionale.
Název v anglickém jazyce
U-DepPLLaMA: Universal Dependency Parsing via Auto-regressive Large Language Models
Popis výsledku anglicky
This paper investigates the rapidly advancing domain of Large Language Models (LLMs) and their growing potential in various fields. A central focus is the exploration of LLMs, e.g., LLaMA, as powerful tools for modeling and representing linguistic information, especially in the realm of syntax. We aim to evaluate the ability of these models to encode syntactic information, especially when explicitly supplied, through fine-tuning processes. Traditionally, Dependency Parsing has relied on specific techniques and dedicated architectures. Our research shifts this approach, conceptualizing it as a sequence-to-sequence task where Language Models interpret and transform syntax into bracketed structures that reflect dependency graphs. We introduce U-DepPLLaMA (Universal Dependency Parsing via auto-regressive LLMs based on LLaMA), a novel architecture optimized for multilingual, end-to-end Dependency Parsing. Our experimental evaluation, across 50 datasets in 26 languages from the Universal Dependency Treebank, shows that LLMs can be effectively trained for dependency parsing without the need for task-specific architectures. The results are on par with current state-of-the-art methods and demonstrate resilience across varying sentence complexities and lengths. © 2024 Associazione Italiana di Linguistica Computazionale.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Italian Journal of Computational Linguistics
ISSN
2499-4553
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
21-38
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85206211493