Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Meeting the challenge: A benchmark corpus for automated Urdu meeting summarization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ACXCZ277J" target="_blank" >RIV/00216208:11320/25:CXCZ277J - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190131770&doi=10.1016%2fj.ipm.2024.103734&partnerID=40&md5=41bc0ab2008a8a59c01dfba52690d63b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190131770&doi=10.1016%2fj.ipm.2024.103734&partnerID=40&md5=41bc0ab2008a8a59c01dfba52690d63b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ipm.2024.103734" target="_blank" >10.1016/j.ipm.2024.103734</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Meeting the challenge: A benchmark corpus for automated Urdu meeting summarization

  • Popis výsledku v původním jazyce

    Meeting summarization has become crucial as the world is gradually shifting towards remote work. Nowadays, automation of meeting summary generation is really needed in order to minimize the time and effort. The surge in online meetings has made summarization an indispensable requirement, yet summarizing Urdu meetings poses a formidable challenge due to the scarcity of pertinent corpora. Abstractively summarizing Urdu meetings compounds this challenge. This research addresses these gaps by introducing the Center for Language Engineering (CLE) Meeting Corpus, a benchmark resource tailored for meeting summarization in administrative and technical domains where Urdu is the primary language. Comprising 240 recorded meetings, encompassing both scenario-based and natural discussions, the corpus spans approximately 7900 min (∼132 h) of meeting duration. Beyond corpus creation, the study delves into the performance analysis of various deep learning models in Urdu abstractive meeting summarization. Models, including ur_mT5-small, ur_mT5-base, ur_mBART-large, ur_RoBERTa-urduhack-small, and GPT-3.5 with prompting, undergo comprehensive evaluation using both automated metrics and manual assessments based on five specific criteria. This research not only addresses the immediate challenges of Urdu meeting summarization but also contributes to advancing the capabilities of meeting summarization systems in diverse organizational contexts where Urdu is the language of communication during meetings. © 2024 Elsevier Ltd

  • Název v anglickém jazyce

    Meeting the challenge: A benchmark corpus for automated Urdu meeting summarization

  • Popis výsledku anglicky

    Meeting summarization has become crucial as the world is gradually shifting towards remote work. Nowadays, automation of meeting summary generation is really needed in order to minimize the time and effort. The surge in online meetings has made summarization an indispensable requirement, yet summarizing Urdu meetings poses a formidable challenge due to the scarcity of pertinent corpora. Abstractively summarizing Urdu meetings compounds this challenge. This research addresses these gaps by introducing the Center for Language Engineering (CLE) Meeting Corpus, a benchmark resource tailored for meeting summarization in administrative and technical domains where Urdu is the primary language. Comprising 240 recorded meetings, encompassing both scenario-based and natural discussions, the corpus spans approximately 7900 min (∼132 h) of meeting duration. Beyond corpus creation, the study delves into the performance analysis of various deep learning models in Urdu abstractive meeting summarization. Models, including ur_mT5-small, ur_mT5-base, ur_mBART-large, ur_RoBERTa-urduhack-small, and GPT-3.5 with prompting, undergo comprehensive evaluation using both automated metrics and manual assessments based on five specific criteria. This research not only addresses the immediate challenges of Urdu meeting summarization but also contributes to advancing the capabilities of meeting summarization systems in diverse organizational contexts where Urdu is the language of communication during meetings. © 2024 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Processing and Management

  • ISSN

    0306-4573

  • e-ISSN

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    1-21

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85190131770