AI generates covertly racist decisions about people based on their dialect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AE9XNTWPC" target="_blank" >RIV/00216208:11320/25:E9XNTWPC - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202506726&doi=10.1038%2fs41586-024-07856-5&partnerID=40&md5=82cfa7237f4d8030765c93eaf3050d1b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202506726&doi=10.1038%2fs41586-024-07856-5&partnerID=40&md5=82cfa7237f4d8030765c93eaf3050d1b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-024-07856-5" target="_blank" >10.1038/s41586-024-07856-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AI generates covertly racist decisions about people based on their dialect
Popis výsledku v původním jazyce
Hundreds of millions of people now interact with language models, with uses ranging from help with writing1,2 to informing hiring decisions3. However, these language models are known to perpetuate systematic racial prejudices, making their judgements biased in problematic ways about groups such as African Americans4–7. Although previous research has focused on overt racism in language models, social scientists have argued that racism with a more subtle character has developed over time, particularly in the United States after the civil rights movement8,9. It is unknown whether this covert racism manifests in language models. Here, we demonstrate that language models embody covert racism in the form of dialect prejudice, exhibiting raciolinguistic stereotypes about speakers of African American English (AAE) that are more negative than any human stereotypes about African Americans ever experimentally recorded. By contrast, the language models’ overt stereotypes about African Americans are more positive. Dialect prejudice has the potential for harmful consequences: language models are more likely to suggest that speakers of AAE be assigned less-prestigious jobs, be convicted of crimes and be sentenced to death. Finally, we show that current practices of alleviating racial bias in language models, such as human preference alignment, exacerbate the discrepancy between covert and overt stereotypes, by superficially obscuring the racism that language models maintain on a deeper level. Our findings have far-reaching implications for the fair and safe use of language technology. © The Author(s) 2024.
Název v anglickém jazyce
AI generates covertly racist decisions about people based on their dialect
Popis výsledku anglicky
Hundreds of millions of people now interact with language models, with uses ranging from help with writing1,2 to informing hiring decisions3. However, these language models are known to perpetuate systematic racial prejudices, making their judgements biased in problematic ways about groups such as African Americans4–7. Although previous research has focused on overt racism in language models, social scientists have argued that racism with a more subtle character has developed over time, particularly in the United States after the civil rights movement8,9. It is unknown whether this covert racism manifests in language models. Here, we demonstrate that language models embody covert racism in the form of dialect prejudice, exhibiting raciolinguistic stereotypes about speakers of African American English (AAE) that are more negative than any human stereotypes about African Americans ever experimentally recorded. By contrast, the language models’ overt stereotypes about African Americans are more positive. Dialect prejudice has the potential for harmful consequences: language models are more likely to suggest that speakers of AAE be assigned less-prestigious jobs, be convicted of crimes and be sentenced to death. Finally, we show that current practices of alleviating racial bias in language models, such as human preference alignment, exacerbate the discrepancy between covert and overt stereotypes, by superficially obscuring the racism that language models maintain on a deeper level. Our findings have far-reaching implications for the fair and safe use of language technology. © The Author(s) 2024.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature
ISSN
0028-0836
e-ISSN
—
Svazek periodika
633
Číslo periodika v rámci svazku
8028
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
147-154
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85202506726