Leveraging Syntactic Dependencies in Disambiguation: The Case of African American English
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ALU4N6LYJ" target="_blank" >RIV/00216208:11320/25:LU4N6LYJ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195933883&partnerID=40&md5=ea86e02720e8616016dd9ae1ee7c2621" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195933883&partnerID=40&md5=ea86e02720e8616016dd9ae1ee7c2621</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Leveraging Syntactic Dependencies in Disambiguation: The Case of African American English
Popis výsledku v původním jazyce
African American English (AAE) has received recent attention in the field of natural language processing (NLP). Efforts to address bias against AAE in NLP systems tend to focus on lexical differences. Whenever the structural uniqueness of AAE is considered, the solution is often to remove or neutralize the differences. This work leverages knowledge about the unique morphosyntactic structures to improve automatic disambiguation of habitual and non-habitual meanings of “be” in naturally produced AAE transcribed speech. Both meanings are employed in AAE but examples of Habitual be are rare in the already limited AAE data. Generally, representing contextual syntactic information improves semantic disambiguation of habituality. Using an ensemble of classical machine learning models with a representation of the unique POS and dependency patterns of Habitual be, we show that integrating syntactic information improves the identification of habitual uses of “be” by about 65 F1 points over a simple baseline model of n-grams, and as much as 74 points. The success of this approach demonstrates the potential impact when we embrace, rather than neutralize, the structural uniqueness of African American English. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
Leveraging Syntactic Dependencies in Disambiguation: The Case of African American English
Popis výsledku anglicky
African American English (AAE) has received recent attention in the field of natural language processing (NLP). Efforts to address bias against AAE in NLP systems tend to focus on lexical differences. Whenever the structural uniqueness of AAE is considered, the solution is often to remove or neutralize the differences. This work leverages knowledge about the unique morphosyntactic structures to improve automatic disambiguation of habitual and non-habitual meanings of “be” in naturally produced AAE transcribed speech. Both meanings are employed in AAE but examples of Habitual be are rare in the already limited AAE data. Generally, representing contextual syntactic information improves semantic disambiguation of habituality. Using an ensemble of classical machine learning models with a representation of the unique POS and dependency patterns of Habitual be, we show that integrating syntactic information improves the identification of habitual uses of “be” by about 65 F1 points over a simple baseline model of n-grams, and as much as 74 points. The success of this approach demonstrates the potential impact when we embrace, rather than neutralize, the structural uniqueness of African American English. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
10403-10415
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—