Decoding Academic Integrity Policies: A Corpus Linguistics Investigation of AI and Other Technological Threats
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AELID769B" target="_blank" >RIV/00216208:11320/25:ELID769B - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1057/s41307-023-00323-2" target="_blank" >https://doi.org/10.1057/s41307-023-00323-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1057/s41307-023-00323-2" target="_blank" >10.1057/s41307-023-00323-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decoding Academic Integrity Policies: A Corpus Linguistics Investigation of AI and Other Technological Threats
Popis výsledku v původním jazyce
This study presents a corpus analysis of academic integrity policies from Higher Education Institutions (HEIs) worldwide, exploring how they address the issues posed by technological threats, such as Automated Paraphrasing Tools and generative-artificial intelligence tools, such as ChatGPT. The analysis of 142 policies conducted in November and December 2022, and May 2023 reveals a gap regarding the mention of AI and associated technologies in the available academic integrity policies. Despite the growing prevalence of these tools in the 6-month period since the release of ChatGPT, no HEIs had produced revised academic integrity policies. Content analysis of 53 guidance documents produced by HEIs suggests an overall positive focus of Gen AI tools, yet advises caution. This study suggests a modification to Bretag et al.’s (Int J Educ Integr 7, 2011) exemplary academic integrity model, introducing “Technological Explicitness” — emphasizing the need to include explicit guidelines about new technologies in academic integrity policies. These results underscore the urgent need for HEIs to revise their academic integrity policies, considering the evolving landscape of AI and its implications for academic integrity. This paper argues for a multifaceted approach to deal with the issues of integrating technology, education, policy reform, and assessment restructuring to navigate these challenges while upholding academic integrity.
Název v anglickém jazyce
Decoding Academic Integrity Policies: A Corpus Linguistics Investigation of AI and Other Technological Threats
Popis výsledku anglicky
This study presents a corpus analysis of academic integrity policies from Higher Education Institutions (HEIs) worldwide, exploring how they address the issues posed by technological threats, such as Automated Paraphrasing Tools and generative-artificial intelligence tools, such as ChatGPT. The analysis of 142 policies conducted in November and December 2022, and May 2023 reveals a gap regarding the mention of AI and associated technologies in the available academic integrity policies. Despite the growing prevalence of these tools in the 6-month period since the release of ChatGPT, no HEIs had produced revised academic integrity policies. Content analysis of 53 guidance documents produced by HEIs suggests an overall positive focus of Gen AI tools, yet advises caution. This study suggests a modification to Bretag et al.’s (Int J Educ Integr 7, 2011) exemplary academic integrity model, introducing “Technological Explicitness” — emphasizing the need to include explicit guidelines about new technologies in academic integrity policies. These results underscore the urgent need for HEIs to revise their academic integrity policies, considering the evolving landscape of AI and its implications for academic integrity. This paper argues for a multifaceted approach to deal with the issues of integrating technology, education, policy reform, and assessment restructuring to navigate these challenges while upholding academic integrity.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Higher Education Policy
ISSN
1740-3863
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
633-653
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—