Using corpora from Natural Language Processing for investigating crosslinguistic influence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AEXUUBARJ" target="_blank" >RIV/00216208:11320/25:EXUUBARJ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194090314&doi=10.1016%2fj.amper.2024.100174&partnerID=40&md5=e72f1d74ff9909c7fd8b9606094d0fa8" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194090314&doi=10.1016%2fj.amper.2024.100174&partnerID=40&md5=e72f1d74ff9909c7fd8b9606094d0fa8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amper.2024.100174" target="_blank" >10.1016/j.amper.2024.100174</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using corpora from Natural Language Processing for investigating crosslinguistic influence
Popis výsledku v původním jazyce
Language transfer or crosslinguistic influence (CLI), referring to the influence of an L1 on the learning of an L2, is a significant aspect of Second Language Acquisition (SLA). Much work in this area is data-driven, and consequently, large L2 corpora have been constructed for use in CLI analyses. The field of Natural Language Processing, and in particular the specific task of Grammatical Error Correction (GEC), also has corpora that can be of use in these kinds of analyses. In this paper, we take the FCE corpus, a popular dataset of English as a Second Language (ESL) learner texts used for Grammatical Error Correction model training, and use it to analyse the relationship between the distributions of errors and the first languages of the ESL learners. We carry out a detailed analysis of three error types, and demonstrate that the errors made by ESL learners have a statistically significant relationship with linguistic characteristics of their first languages, suggesting the existence of both positive and negative transfer. The analysis aligns with results from the SLA literature, and validates the use of GEC corpora for use in CLI analysis. © 2024 The Authors
Název v anglickém jazyce
Using corpora from Natural Language Processing for investigating crosslinguistic influence
Popis výsledku anglicky
Language transfer or crosslinguistic influence (CLI), referring to the influence of an L1 on the learning of an L2, is a significant aspect of Second Language Acquisition (SLA). Much work in this area is data-driven, and consequently, large L2 corpora have been constructed for use in CLI analyses. The field of Natural Language Processing, and in particular the specific task of Grammatical Error Correction (GEC), also has corpora that can be of use in these kinds of analyses. In this paper, we take the FCE corpus, a popular dataset of English as a Second Language (ESL) learner texts used for Grammatical Error Correction model training, and use it to analyse the relationship between the distributions of errors and the first languages of the ESL learners. We carry out a detailed analysis of three error types, and demonstrate that the errors made by ESL learners have a statistically significant relationship with linguistic characteristics of their first languages, suggesting the existence of both positive and negative transfer. The analysis aligns with results from the SLA literature, and validates the use of GEC corpora for use in CLI analysis. © 2024 The Authors
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ampersand
ISSN
2215-0390
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85194090314