Assessing the Cross-linguistic Utility of Abstract Meaning Representation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AEZW9RUL2" target="_blank" >RIV/00216208:11320/25:EZW9RUL2 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194465811&doi=10.1162%2fcoli_a_00503&partnerID=40&md5=eb5d1b37f161660a6a3af954585c22cc" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194465811&doi=10.1162%2fcoli_a_00503&partnerID=40&md5=eb5d1b37f161660a6a3af954585c22cc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/coli_a_00503" target="_blank" >10.1162/coli_a_00503</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing the Cross-linguistic Utility of Abstract Meaning Representation
Popis výsledku v původním jazyce
Semantic representations capture the meaning of a text. Abstract Meaning Representation (AMR), a type of semantic representation, focuses on predicate-argument structure and abstracts away from surface form. Though AMR was developed initially for English, it has now been adapted to a multitude of languages in the form of non-English annotation schemas, cross-lingual text-to-AMR parsing, and AMR-to-(non-English) text generation. We advance prior work on cross-lingual AMR by thoroughly investigating the amount, types, and causes of differences that appear in AMRs of different languages. Further, we compare how AMR captures meaning in cross-lingual pairs versus strings, and show that AMR graphs are able to draw out fine-grained differences between parallel sentences. We explore three primary research questions: (1) What are the types and causes of differences in parallel AMRs? (2) How can we measure the amount of difference between AMR pairs in different languages? (3) Given that AMR structure is affected by language and exhibits cross-lingual differences, how do cross-lingual AMR pairs compare to string-based representations of cross-lingual sentence pairs? We find that the source language itself does have a measurable impact on AMR structure, and that translation divergences and annotator choices also lead to differences in cross-lingual AMR pairs. We explore the implications of this finding throughout our study, concluding that, although AMR is useful to capture meaning across languages, evaluations need to take into account source language influences if they are to paint an accurate picture of system output, and meaning generally. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Assessing the Cross-linguistic Utility of Abstract Meaning Representation
Popis výsledku anglicky
Semantic representations capture the meaning of a text. Abstract Meaning Representation (AMR), a type of semantic representation, focuses on predicate-argument structure and abstracts away from surface form. Though AMR was developed initially for English, it has now been adapted to a multitude of languages in the form of non-English annotation schemas, cross-lingual text-to-AMR parsing, and AMR-to-(non-English) text generation. We advance prior work on cross-lingual AMR by thoroughly investigating the amount, types, and causes of differences that appear in AMRs of different languages. Further, we compare how AMR captures meaning in cross-lingual pairs versus strings, and show that AMR graphs are able to draw out fine-grained differences between parallel sentences. We explore three primary research questions: (1) What are the types and causes of differences in parallel AMRs? (2) How can we measure the amount of difference between AMR pairs in different languages? (3) Given that AMR structure is affected by language and exhibits cross-lingual differences, how do cross-lingual AMR pairs compare to string-based representations of cross-lingual sentence pairs? We find that the source language itself does have a measurable impact on AMR structure, and that translation divergences and annotator choices also lead to differences in cross-lingual AMR pairs. We explore the implications of this finding throughout our study, concluding that, although AMR is useful to capture meaning across languages, evaluations need to take into account source language influences if they are to paint an accurate picture of system output, and meaning generally. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Linguistics
ISSN
0891-2017
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
55
Strana od-do
419-473
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85194465811