Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Assessing the Cross-linguistic Utility of Abstract Meaning Representation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AEZW9RUL2" target="_blank" >RIV/00216208:11320/25:EZW9RUL2 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194465811&doi=10.1162%2fcoli_a_00503&partnerID=40&md5=eb5d1b37f161660a6a3af954585c22cc" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194465811&doi=10.1162%2fcoli_a_00503&partnerID=40&md5=eb5d1b37f161660a6a3af954585c22cc</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1162/coli_a_00503" target="_blank" >10.1162/coli_a_00503</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Assessing the Cross-linguistic Utility of Abstract Meaning Representation

  • Popis výsledku v původním jazyce

    Semantic representations capture the meaning of a text. Abstract Meaning Representation (AMR), a type of semantic representation, focuses on predicate-argument structure and abstracts away from surface form. Though AMR was developed initially for English, it has now been adapted to a multitude of languages in the form of non-English annotation schemas, cross-lingual text-to-AMR parsing, and AMR-to-(non-English) text generation. We advance prior work on cross-lingual AMR by thoroughly investigating the amount, types, and causes of differences that appear in AMRs of different languages. Further, we compare how AMR captures meaning in cross-lingual pairs versus strings, and show that AMR graphs are able to draw out fine-grained differences between parallel sentences. We explore three primary research questions: (1) What are the types and causes of differences in parallel AMRs? (2) How can we measure the amount of difference between AMR pairs in different languages? (3) Given that AMR structure is affected by language and exhibits cross-lingual differences, how do cross-lingual AMR pairs compare to string-based representations of cross-lingual sentence pairs? We find that the source language itself does have a measurable impact on AMR structure, and that translation divergences and annotator choices also lead to differences in cross-lingual AMR pairs. We explore the implications of this finding throughout our study, concluding that, although AMR is useful to capture meaning across languages, evaluations need to take into account source language influences if they are to paint an accurate picture of system output, and meaning generally. © 2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Assessing the Cross-linguistic Utility of Abstract Meaning Representation

  • Popis výsledku anglicky

    Semantic representations capture the meaning of a text. Abstract Meaning Representation (AMR), a type of semantic representation, focuses on predicate-argument structure and abstracts away from surface form. Though AMR was developed initially for English, it has now been adapted to a multitude of languages in the form of non-English annotation schemas, cross-lingual text-to-AMR parsing, and AMR-to-(non-English) text generation. We advance prior work on cross-lingual AMR by thoroughly investigating the amount, types, and causes of differences that appear in AMRs of different languages. Further, we compare how AMR captures meaning in cross-lingual pairs versus strings, and show that AMR graphs are able to draw out fine-grained differences between parallel sentences. We explore three primary research questions: (1) What are the types and causes of differences in parallel AMRs? (2) How can we measure the amount of difference between AMR pairs in different languages? (3) Given that AMR structure is affected by language and exhibits cross-lingual differences, how do cross-lingual AMR pairs compare to string-based representations of cross-lingual sentence pairs? We find that the source language itself does have a measurable impact on AMR structure, and that translation divergences and annotator choices also lead to differences in cross-lingual AMR pairs. We explore the implications of this finding throughout our study, concluding that, although AMR is useful to capture meaning across languages, evaluations need to take into account source language influences if they are to paint an accurate picture of system output, and meaning generally. © 2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Linguistics

  • ISSN

    0891-2017

  • e-ISSN

  • Svazek periodika

    50

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    55

  • Strana od-do

    419-473

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85194465811