Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Empirical Analysis for Unsupervised Universal Dependency Parse Tree Aggregation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AFHKLLZB5" target="_blank" >RIV/00216208:11320/25:FHKLLZB5 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arxiv.org/abs/2403.19183" target="_blank" >https://arxiv.org/abs/2403.19183</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.48550/arXiv.2403.19183" target="_blank" >10.48550/arXiv.2403.19183</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Empirical Analysis for Unsupervised Universal Dependency Parse Tree Aggregation

  • Popis výsledku v původním jazyce

    Dependency parsing is an essential task in NLP, and the quality of dependency parsers is crucial for many downstream tasks. Parsers' quality often varies depending on the domain and the language involved. Therefore, it is essential to combat the issue of varying quality to achieve stable performance. In various NLP tasks, aggregation methods are used for post-processing aggregation and have been shown to combat the issue of varying quality. However, aggregation methods for post-processing aggregation have not been sufficiently studied in dependency parsing tasks. In an extensive empirical study, we compare different unsupervised post-processing aggregation methods to identify the most suitable dependency tree structure aggregation method.

  • Název v anglickém jazyce

    Empirical Analysis for Unsupervised Universal Dependency Parse Tree Aggregation

  • Popis výsledku anglicky

    Dependency parsing is an essential task in NLP, and the quality of dependency parsers is crucial for many downstream tasks. Parsers' quality often varies depending on the domain and the language involved. Therefore, it is essential to combat the issue of varying quality to achieve stable performance. In various NLP tasks, aggregation methods are used for post-processing aggregation and have been shown to combat the issue of varying quality. However, aggregation methods for post-processing aggregation have not been sufficiently studied in dependency parsing tasks. In an extensive empirical study, we compare different unsupervised post-processing aggregation methods to identify the most suitable dependency tree structure aggregation method.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ArXiv

  • ISSN

    2331-8422

  • e-ISSN

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus