The Hidden Space of Transformer Language Adapters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AI3D3EHG2" target="_blank" >RIV/00216208:11320/25:I3D3EHG2 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204448462&partnerID=40&md5=9fb040d4148812570a11cd2297870de0" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204448462&partnerID=40&md5=9fb040d4148812570a11cd2297870de0</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Hidden Space of Transformer Language Adapters
Popis výsledku v původním jazyce
We analyze the operation of transformer language adapters, which are small modules trained on top of a frozen language model to adapt its predictions to new target languages. We show that adapted predictions mostly evolve in the source language the model was trained on, while the target language becomes pronounced only in the very last layers of the model. Moreover, the adaptation process is gradual and distributed across layers, where it is possible to skip small groups of adapters without decreasing adaptation performance. Last, we show that adapters operate on top of the model's frozen representation space while largely preserving its structure, rather than on an “isolated” subspace. Our findings provide a deeper view into the adaptation process of language models to new languages, showcasing the constraints imposed on it by the underlying model and introduces practical implications to enhance its efficiency. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
The Hidden Space of Transformer Language Adapters
Popis výsledku anglicky
We analyze the operation of transformer language adapters, which are small modules trained on top of a frozen language model to adapt its predictions to new target languages. We show that adapted predictions mostly evolve in the source language the model was trained on, while the target language becomes pronounced only in the very last layers of the model. Moreover, the adaptation process is gradual and distributed across layers, where it is possible to skip small groups of adapters without decreasing adaptation performance. Last, we show that adapters operate on top of the model's frozen representation space while largely preserving its structure, rather than on an “isolated” subspace. Our findings provide a deeper view into the adaptation process of language models to new languages, showcasing the constraints imposed on it by the underlying model and introduces practical implications to enhance its efficiency. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Annu. Meet. Assoc. Comput Linguist.
ISBN
979-889176094-3
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
20
Strana od-do
6588-6607
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Hybrid, Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—