Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Automated Model for Child Language Impairment Prediction Using Hybrid Optimal BiLSTM

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AIMSN95HH" target="_blank" >RIV/00216208:11320/25:IMSN95HH - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182810580&doi=10.1080%2f03772063.2023.2243881&partnerID=40&md5=54e9bf86ed63e44a521b149268ba6f3b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182810580&doi=10.1080%2f03772063.2023.2243881&partnerID=40&md5=54e9bf86ed63e44a521b149268ba6f3b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03772063.2023.2243881" target="_blank" >10.1080/03772063.2023.2243881</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Automated Model for Child Language Impairment Prediction Using Hybrid Optimal BiLSTM

  • Popis výsledku v původním jazyce

    Children without obvious disabilities (hearing loss/low intellectual capacity) may have language skill development issues due to specific language impairment (SLI), a communication disorder. The SLI has a significant impact on a child's speaking, listening, reading, and writing abilities. SLI is typically known as development language disorder, developmental dysphasia, or language delay. Recently, machine learning as well as deep learning techniques have been quite effective in predicting the early stage of SLI, analyzing the disorder severity, and predicting the treatment efficiency. Existing approaches primarily exploited auditory indicators to diagnose communication disorders, frequently leaving out hidden information acquired in the temporal domain. To overcome this drawback, an optimized Bidirectional Long Short Term Memory (BiLSTM) architecture is presented in this paper to handle the speech dynamics. The Improved Hybrid Aquila Optimizer and Flow Directional algorithm known as IHAOFDA is integrated with the BiLSTM architecture to optimize the hyperparameters of the BiLSTM structure. When assessed using the information from the SLI children in the Laboratory of Artificial Neural Network Applications (LANNA) dataset, the proposed model performs better. The IHAOFDA-optimized BiLSTM architecture improves accuracy in classifying different severity levels such as mild, moderate, and severe. © 2024 IETE.

  • Název v anglickém jazyce

    An Automated Model for Child Language Impairment Prediction Using Hybrid Optimal BiLSTM

  • Popis výsledku anglicky

    Children without obvious disabilities (hearing loss/low intellectual capacity) may have language skill development issues due to specific language impairment (SLI), a communication disorder. The SLI has a significant impact on a child's speaking, listening, reading, and writing abilities. SLI is typically known as development language disorder, developmental dysphasia, or language delay. Recently, machine learning as well as deep learning techniques have been quite effective in predicting the early stage of SLI, analyzing the disorder severity, and predicting the treatment efficiency. Existing approaches primarily exploited auditory indicators to diagnose communication disorders, frequently leaving out hidden information acquired in the temporal domain. To overcome this drawback, an optimized Bidirectional Long Short Term Memory (BiLSTM) architecture is presented in this paper to handle the speech dynamics. The Improved Hybrid Aquila Optimizer and Flow Directional algorithm known as IHAOFDA is integrated with the BiLSTM architecture to optimize the hyperparameters of the BiLSTM structure. When assessed using the information from the SLI children in the Laboratory of Artificial Neural Network Applications (LANNA) dataset, the proposed model performs better. The IHAOFDA-optimized BiLSTM architecture improves accuracy in classifying different severity levels such as mild, moderate, and severe. © 2024 IETE.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IETE Journal of Research

  • ISSN

    0377-2063

  • e-ISSN

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    291-306

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85182810580