Automatically Finding Actors in Texts: A Performance Review of Multilingual Named Entity Recognition Tools
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AJ2XNL4A2" target="_blank" >RIV/00216208:11320/25:J2XNL4A2 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188524285&doi=10.1080%2f19312458.2024.2324789&partnerID=40&md5=3c784997e2fadd2d84b0d7923affcad0" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188524285&doi=10.1080%2f19312458.2024.2324789&partnerID=40&md5=3c784997e2fadd2d84b0d7923affcad0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/19312458.2024.2324789" target="_blank" >10.1080/19312458.2024.2324789</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatically Finding Actors in Texts: A Performance Review of Multilingual Named Entity Recognition Tools
Popis výsledku v původním jazyce
Named Entity Recognition (NER) is a crucial task in natural language processing and has a wide range of applications in communication science. However, there is a lack of systematic evaluations of available NER tools in the field. In this study, we evaluate the performance of various multilingual NER tools, including rule-based and transformer-based models. We conducted experiments on corpora containing texts in multiple languages and evaluated the F1-score, speed, and features of each tool. Our results show that transformer-based language models outperform rule-based models and other NER tools in most languages. However, we found that the performance of the transformer-based models varies depending on the language and the corpus. Our study provides insights into the strengths and weaknesses of NER tools and their suitability for specific languages, which can inform the selection of appropriate tools for future studies and applications in communication science. © 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
Název v anglickém jazyce
Automatically Finding Actors in Texts: A Performance Review of Multilingual Named Entity Recognition Tools
Popis výsledku anglicky
Named Entity Recognition (NER) is a crucial task in natural language processing and has a wide range of applications in communication science. However, there is a lack of systematic evaluations of available NER tools in the field. In this study, we evaluate the performance of various multilingual NER tools, including rule-based and transformer-based models. We conducted experiments on corpora containing texts in multiple languages and evaluated the F1-score, speed, and features of each tool. Our results show that transformer-based language models outperform rule-based models and other NER tools in most languages. However, we found that the performance of the transformer-based models varies depending on the language and the corpus. Our study provides insights into the strengths and weaknesses of NER tools and their suitability for specific languages, which can inform the selection of appropriate tools for future studies and applications in communication science. © 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communication Methods and Measures
ISSN
1931-2458
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
371-389
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85188524285