JHU IWSLT 2024 Dialectal and Low-resource System Description
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3APXAQ5NK5" target="_blank" >RIV/00216208:11320/25:PXAQ5NK5 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204370217&partnerID=40&md5=805772f42861eabf1f8ee49cb9e8c57b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204370217&partnerID=40&md5=805772f42861eabf1f8ee49cb9e8c57b</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
JHU IWSLT 2024 Dialectal and Low-resource System Description
Popis výsledku v původním jazyce
Johns Hopkins University (JHU) submitted systems for all eight language pairs in the 2024 Low-Resource Language Track. The main effort of this work revolves around fine-tuning large and publicly available models in three proposed systems: i) end-to-end speech translation (ST) fine-tuning of SEAMLESSM4T v2; ii) ST fine-tuning of Whisper; iii) a cascaded system involving automatic speech recognition with fine-tuned Whisper and machine translation with NLLB. On top of systems above, we conduct a comparative analysis of different training paradigms, such as intra-distillation of NLLB, joint training and curriculum learning of SEAMLESSM4T v2, and multi-task learning and pseudo-translation with Whisper. Our results show that the best-performing approach differs by language pairs, but that i) fine-tuned SEAMLESSM4T v2 tends to perform best for source languages on which it was pre-trained, ii) multitask training helps Whisper fine-tuning, iii) cascaded systems with Whisper and NLLB tend to outperform Whisper alone, and iv) intra-distillation helps NLLB fine-tuning. ©2024 Association for Computational Linguistics.
Název v anglickém jazyce
JHU IWSLT 2024 Dialectal and Low-resource System Description
Popis výsledku anglicky
Johns Hopkins University (JHU) submitted systems for all eight language pairs in the 2024 Low-Resource Language Track. The main effort of this work revolves around fine-tuning large and publicly available models in three proposed systems: i) end-to-end speech translation (ST) fine-tuning of SEAMLESSM4T v2; ii) ST fine-tuning of Whisper; iii) a cascaded system involving automatic speech recognition with fine-tuned Whisper and machine translation with NLLB. On top of systems above, we conduct a comparative analysis of different training paradigms, such as intra-distillation of NLLB, joint training and curriculum learning of SEAMLESSM4T v2, and multi-task learning and pseudo-translation with Whisper. Our results show that the best-performing approach differs by language pairs, but that i) fine-tuned SEAMLESSM4T v2 tends to perform best for source languages on which it was pre-trained, ii) multitask training helps Whisper fine-tuning, iii) cascaded systems with Whisper and NLLB tend to outperform Whisper alone, and iv) intra-distillation helps NLLB fine-tuning. ©2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IWSLT - Int. Conf. Spok. Lang. Transl., Proc. Conf.
ISBN
979-889176141-4
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
188-201
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Hybrid, Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—