Dependency Transformer Grammars: Integrating Dependency Structures into Transformer Language Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQG6WDX7Q" target="_blank" >RIV/00216208:11320/25:QG6WDX7Q - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85204443275&origin=resultslist&sort=plf-f&src=s&sid=e2b9c7bf82ada12b524d66c7a293503a&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dependency+Transformer+Grammars%3A+Integrating+Dependency+Structures+into+Transformer+Language+Models%29&sl=114&sessionSearchId=e2b9c7bf82ada12b524d66c7a293503a&relpos=0" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85204443275&origin=resultslist&sort=plf-f&src=s&sid=e2b9c7bf82ada12b524d66c7a293503a&sot=b&sdt=b&s=TITLE-ABS-KEY%28Dependency+Transformer+Grammars%3A+Integrating+Dependency+Structures+into+Transformer+Language+Models%29&sl=114&sessionSearchId=e2b9c7bf82ada12b524d66c7a293503a&relpos=0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2024.acl-long.84" target="_blank" >10.18653/v1/2024.acl-long.84</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dependency Transformer Grammars: Integrating Dependency Structures into Transformer Language Models
Popis výsledku v původním jazyce
Syntactic Transformer language models aim to achieve better generalization through simultaneously modeling syntax trees and sentences. While prior work has been focusing on adding constituency-based structures to Transformers, we introduce Dependency Transformer Grammars (DTGs), a new class of Transformer language model with explicit dependency-based inductive bias. DTGs simulate dependency transition systems with constrained attention patterns by modifying attention masks, incorporate the stack information through relative positional encoding, and augment dependency arc representation with a combination of token embeddings and operation embeddings. When trained on a dataset of sentences annotated with dependency trees, DTGs achieve better generalization while maintaining comparable perplexity with Transformer language model baselines. DTGs also outperform recent constituency-based models, showing that dependency can better guide Transformer language models. Our code is released at https://github.com/zhaoyd1/Dep_Transformer_Grammars.
Název v anglickém jazyce
Dependency Transformer Grammars: Integrating Dependency Structures into Transformer Language Models
Popis výsledku anglicky
Syntactic Transformer language models aim to achieve better generalization through simultaneously modeling syntax trees and sentences. While prior work has been focusing on adding constituency-based structures to Transformers, we introduce Dependency Transformer Grammars (DTGs), a new class of Transformer language model with explicit dependency-based inductive bias. DTGs simulate dependency transition systems with constrained attention patterns by modifying attention masks, incorporate the stack information through relative positional encoding, and augment dependency arc representation with a combination of token embeddings and operation embeddings. When trained on a dataset of sentences annotated with dependency trees, DTGs achieve better generalization while maintaining comparable perplexity with Transformer language model baselines. DTGs also outperform recent constituency-based models, showing that dependency can better guide Transformer language models. Our code is released at https://github.com/zhaoyd1/Dep_Transformer_Grammars.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
ISBN
979-8-89176-094-3
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
1543-1556
Název nakladatele
ACL
Místo vydání
—
Místo konání akce
Bangkok, Thailand
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—