Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Inducing Systematicity in Transformers by Attending to Structurally Quantized Embeddings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYBRRMRQA" target="_blank" >RIV/00216208:11320/25:YBRRMRQA - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204459093&partnerID=40&md5=60c1c0c5d1df214472490765afd3fade" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204459093&partnerID=40&md5=60c1c0c5d1df214472490765afd3fade</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Inducing Systematicity in Transformers by Attending to Structurally Quantized Embeddings

  • Popis výsledku v původním jazyce

    Transformers generalize to novel compositions of structures and entities after being trained on a complex dataset, but easily overfit on datasets of insufficient complexity. We observe that when the training set is sufficiently complex, the model encodes structurally equivalent sentences using a systematic attention pattern. Inspired by this observation, we propose SQ-Transformer (Structurally Quantized) that explicitly encourages systematicity in the embeddings and attention layers even with low-complexity data. At the embedding level, we introduce Structure-oriented Vector Quantization (SoVQ) to cluster word embeddings into several classes of structurally equivalent entities. At the attention level, we devise the Systematic Attention Layer (SAL) and an alternative, Systematically Regularized Layer (SRL) that operate on the quantized word embeddings so that sentences of the same structure are encoded with invariant or similar attention patterns. Empirically, we show SQ-Transformer achieves stronger compositional generalization than the vanilla Transformer on multiple low-complexity semantic parsing and machine translation datasets. In our analysis, we show SoVQ indeed learns a syntactically clustered embedding space, and SAL/SRL induces generalizable attention patterns, altogether leading to improved systematicity. © 2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Inducing Systematicity in Transformers by Attending to Structurally Quantized Embeddings

  • Popis výsledku anglicky

    Transformers generalize to novel compositions of structures and entities after being trained on a complex dataset, but easily overfit on datasets of insufficient complexity. We observe that when the training set is sufficiently complex, the model encodes structurally equivalent sentences using a systematic attention pattern. Inspired by this observation, we propose SQ-Transformer (Structurally Quantized) that explicitly encourages systematicity in the embeddings and attention layers even with low-complexity data. At the embedding level, we introduce Structure-oriented Vector Quantization (SoVQ) to cluster word embeddings into several classes of structurally equivalent entities. At the attention level, we devise the Systematic Attention Layer (SAL) and an alternative, Systematically Regularized Layer (SRL) that operate on the quantized word embeddings so that sentences of the same structure are encoded with invariant or similar attention patterns. Empirically, we show SQ-Transformer achieves stronger compositional generalization than the vanilla Transformer on multiple low-complexity semantic parsing and machine translation datasets. In our analysis, we show SoVQ indeed learns a syntactically clustered embedding space, and SAL/SRL induces generalizable attention patterns, altogether leading to improved systematicity. © 2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proc. Annu. Meet. Assoc. Comput Linguist.

  • ISBN

    979-889176094-3

  • ISSN

    0736-587X

  • e-ISSN

  • Počet stran výsledku

    24

  • Strana od-do

    8360-8383

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Bangkok

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku