Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Complex Word Identification for Italian Language: A Dictionary–based Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AST9IB3JF" target="_blank" >RIV/00216208:11320/25:ST9IB3JF - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2024.clib-1.12" target="_blank" >https://aclanthology.org/2024.clib-1.12</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Complex Word Identification for Italian Language: A Dictionary–based Approach

  • Popis výsledku v původním jazyce

    Assessing word complexity in Italian poses significant challenges, particularly due to the absence of a standardized dataset. This study introduces the first automatic model designed to identify word complexity for native Italian speakers. A dictionary of simple and complex words was constructed, and various configurations of linguistic features were explored to find the best statistical classifier based on Random Forest algorithm. Considering the probabilities of a word to belong to a class, a comparison between the models' predictions and human assessments derived from a dataset annotated for complexity perception was made. Finally, the degree of accord between the model predictions and the human inter-annotator agreement was analyzed using Spearman correlation. Our findings indicate that a model incorporating both linguistic features and word embeddings performed better than other simpler models, also showing a value of correlation with the human judgements similar to the inter-annotator agreement. This study demonstrates the feasibility of an automatic system for detecting complexity in the Italian language with good performances and comparable effectiveness to humans in this subjective task.

  • Název v anglickém jazyce

    Complex Word Identification for Italian Language: A Dictionary–based Approach

  • Popis výsledku anglicky

    Assessing word complexity in Italian poses significant challenges, particularly due to the absence of a standardized dataset. This study introduces the first automatic model designed to identify word complexity for native Italian speakers. A dictionary of simple and complex words was constructed, and various configurations of linguistic features were explored to find the best statistical classifier based on Random Forest algorithm. Considering the probabilities of a word to belong to a class, a comparison between the models' predictions and human assessments derived from a dataset annotated for complexity perception was made. Finally, the degree of accord between the model predictions and the human inter-annotator agreement was analyzed using Spearman correlation. Our findings indicate that a model incorporating both linguistic features and word embeddings performed better than other simpler models, also showing a value of correlation with the human judgements similar to the inter-annotator agreement. This study demonstrates the feasibility of an automatic system for detecting complexity in the Italian language with good performances and comparable effectiveness to humans in this subjective task.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)

  • ISBN

  • ISSN

    2367-5578

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    119-129

  • Název nakladatele

    Department of Computational Linguistics, Institute for Bulgarian Language, Bulgarian Academy of Sciences

  • Místo vydání

  • Místo konání akce

    Sofia, Bulgaria

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku