Linguistic Rule Induction Improves Adversarial and OOD Robustness in Large Language Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ATDED4A2K" target="_blank" >RIV/00216208:11320/25:TDED4A2K - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195915375&partnerID=40&md5=16d68f89b42f03ed02b1e1775dbf6a57" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195915375&partnerID=40&md5=16d68f89b42f03ed02b1e1775dbf6a57</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linguistic Rule Induction Improves Adversarial and OOD Robustness in Large Language Models
Popis výsledku v původním jazyce
Ensuring robustness is especially important when AI is deployed in responsible or safety-critical environments. ChatGPT can perform brilliantly in both adversarial and out-of-distribution (OOD) robustness. Still, other popular large language models (LLMs), like LLaMA-2, ERNIE, and ChatGLM, do not perform satisfactorily in this regard. Therefore, it is valuable to study what efforts play essential roles in ChatGPT, and how to transfer these efforts to other LLMs. This paper experimentally finds that linguistic rule induction is the foundation for identifying the cause-effect relationships in LLMs. Accurately processing the cause-effect relationships in LLMs can improve their adversarial and OOD robustness. Furthermore, we explore a low-cost way of aligning LLMs with linguistic rules. Specifically, we constructed a linguistic rule instruction dataset to fine-tune LLMs. To further energize LLMs for reasoning step-by-step with the linguistic rules, we propose the task-relevant LingR-based chain-of-thoughts. Experiments showed that LingR-induced LLaMA-13B achieves comparable or better results with GPT-3.5 and GPT-4 on various adversarial and OOD robustness evaluations. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
Linguistic Rule Induction Improves Adversarial and OOD Robustness in Large Language Models
Popis výsledku anglicky
Ensuring robustness is especially important when AI is deployed in responsible or safety-critical environments. ChatGPT can perform brilliantly in both adversarial and out-of-distribution (OOD) robustness. Still, other popular large language models (LLMs), like LLaMA-2, ERNIE, and ChatGLM, do not perform satisfactorily in this regard. Therefore, it is valuable to study what efforts play essential roles in ChatGPT, and how to transfer these efforts to other LLMs. This paper experimentally finds that linguistic rule induction is the foundation for identifying the cause-effect relationships in LLMs. Accurately processing the cause-effect relationships in LLMs can improve their adversarial and OOD robustness. Furthermore, we explore a low-cost way of aligning LLMs with linguistic rules. Specifically, we constructed a linguistic rule instruction dataset to fine-tune LLMs. To further energize LLMs for reasoning step-by-step with the linguistic rules, we propose the task-relevant LingR-based chain-of-thoughts. Experiments showed that LingR-induced LLaMA-13B achieves comparable or better results with GPT-3.5 and GPT-4 on various adversarial and OOD robustness evaluations. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
10565-10577
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—