Evaluating the Sentiment Analysis from Auto-Generated Summary Text Using IndoBERT Fine-Tuning Model in Indonesian News Text
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ATEWHUZH8" target="_blank" >RIV/00216208:11320/25:TEWHUZH8 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10402345" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10402345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CICN59264.2023.10402345" target="_blank" >10.1109/CICN59264.2023.10402345</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating the Sentiment Analysis from Auto-Generated Summary Text Using IndoBERT Fine-Tuning Model in Indonesian News Text
Popis výsledku v původním jazyce
Recently, online news has replaced conventional magazines and physical newspapers because of their intuitiveness and timeliness. News sites provide a comprehensive overview of important current events, serving as a valuable source for learning about a country's latest social, political, and economic issues. The government utilizes news channels to get an overview of the specific problems with sentiment analysis. However, the current system only reads news headlines to determine sentiment, so it does not thoroughly measure the opinion in the news content. This situation causes errors in sentiment reading, which should be negatively interpreted as positive or vice versa. This research tests the auto-generated summary text using the IndoBERT fine-tuning model to label the sentiment of news text. This research shows that fine-tuning IndoBERT using the human-made summaries dataset achieves the optimal outcome, with an F1-score of 75% compared to the 65% F1-Score of the auto-generated summary testing dataset. This study shows that the sentiment analysis prediction using the human-made summary dataset scores better than the sentiment analysis resulting from the Autogenerated summary testing dataset.
Název v anglickém jazyce
Evaluating the Sentiment Analysis from Auto-Generated Summary Text Using IndoBERT Fine-Tuning Model in Indonesian News Text
Popis výsledku anglicky
Recently, online news has replaced conventional magazines and physical newspapers because of their intuitiveness and timeliness. News sites provide a comprehensive overview of important current events, serving as a valuable source for learning about a country's latest social, political, and economic issues. The government utilizes news channels to get an overview of the specific problems with sentiment analysis. However, the current system only reads news headlines to determine sentiment, so it does not thoroughly measure the opinion in the news content. This situation causes errors in sentiment reading, which should be negatively interpreted as positive or vice versa. This research tests the auto-generated summary text using the IndoBERT fine-tuning model to label the sentiment of news text. This research shows that fine-tuning IndoBERT using the human-made summaries dataset achieves the optimal outcome, with an F1-score of 75% compared to the 65% F1-Score of the auto-generated summary testing dataset. This study shows that the sentiment analysis prediction using the human-made summary dataset scores better than the sentiment analysis resulting from the Autogenerated summary testing dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN)
ISBN
—
ISSN
2472-7555
e-ISSN
—
Počet stran výsledku
8
Strana od-do
822-829
Název nakladatele
—
Místo vydání
—
Místo konání akce
Bangkok, Thailand
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—