Survey of Large Language Models on the Text Generation Task
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F24%3A43925828" target="_blank" >RIV/62156489:43110/24:43925828 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.11118/978-80-7509-990-7-0195" target="_blank" >https://doi.org/10.11118/978-80-7509-990-7-0195</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/978-80-7509-990-7-0195" target="_blank" >10.11118/978-80-7509-990-7-0195</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Survey of Large Language Models on the Text Generation Task
Popis výsledku v původním jazyce
This paper focuses on the comparison of GPT, GPT-2, XLNet, T5 models on text generation tasks. None of the autoencoder models are included in the comparison ranking due to their unsuitability for text generation tasks. The comparison of the models was performed using the BERT-score metric, which calculates precision, recall and F1 values for each sentence. The median was used to obtain the final results from this metric. A preprocessed dataset of empathetic dialogues was used to test the models, which is presented in this paper and compared with other datasets containing dialogues in English. The tested models were only pre-trained and there was no fine-tune on the dataset used for testing. The transformers library from Hugging face and the Python language were used to test the models. The research showed on the pre-trained dataset empathic dialogues has the highest precision model T5, recall and F1 has the highest precision model GPT-2.
Název v anglickém jazyce
Survey of Large Language Models on the Text Generation Task
Popis výsledku anglicky
This paper focuses on the comparison of GPT, GPT-2, XLNet, T5 models on text generation tasks. None of the autoencoder models are included in the comparison ranking due to their unsuitability for text generation tasks. The comparison of the models was performed using the BERT-score metric, which calculates precision, recall and F1 values for each sentence. The median was used to obtain the final results from this metric. A preprocessed dataset of empathetic dialogues was used to test the models, which is presented in this paper and compared with other datasets containing dialogues in English. The tested models were only pre-trained and there was no fine-tune on the dataset used for testing. The transformers library from Hugging face and the Python language were used to test the models. The research showed on the pre-trained dataset empathic dialogues has the highest precision model T5, recall and F1 has the highest precision model GPT-2.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_017%2F0002334" target="_blank" >EF16_017/0002334: Výzkumná infrastruktura pro mladé vědce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
26th International Conference Economic Competitiveness and Sustainability: Proceedings
ISBN
978-80-7509-990-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
195-200
Název nakladatele
Mendelova univerzita v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
21. 3. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—