Text-Inductive Graphone-Based Language Adaptation for Low-Resource Speech Synthesis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ATV6JFSCB" target="_blank" >RIV/00216208:11320/25:TV6JFSCB - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186095360&doi=10.1109%2fTASLP.2024.3369537&partnerID=40&md5=c3daca4375c1328493ed2c3c8db6a54c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186095360&doi=10.1109%2fTASLP.2024.3369537&partnerID=40&md5=c3daca4375c1328493ed2c3c8db6a54c</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2024.3369537" target="_blank" >10.1109/TASLP.2024.3369537</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Text-Inductive Graphone-Based Language Adaptation for Low-Resource Speech Synthesis
Popis výsledku v původním jazyce
Neural text-to-speech (TTS) systems have made significant progress in generating natural synthetic speech. However, neural TTS requires large amounts of paired training data, which limits its applicability to a small number of resource-rich languages. Previous work on low-resource TTS has addressed the data hungriness based on transfer learning from a multilingual model to low-resource languages, but it still relies heavily on the availability of paired data for the target languages. In this paper, we propose a text-inductive language adaptation framework for low-resource TTS to address the cost of collecting the paired data for low-resource languages. To inject textual knowledge during transfer learning, our framework employs a two-stage adaptation scheme that utilizes both text-only and supervised data for the target language. In the text-based adaptation stage, we update the language-aware embedding layer with a masked language model objective using text-only data for the target language. In the supervised adaptation stage, the entire TTS model is updated using paired data for the target language. We also propose a graphone-based multilingual training method that jointly uses graphemes and International Phonetic Alphabet symbols (referred to as graphones) for resource-rich languages, while using only graphemes for low-resource languages. This approach facilitates the transfer of pronunciation knowledge from resource-rich to low-resource languages. Through extensive evaluations, we demonstrate that 1) our framework with text-based adaptation outperforms the previous supervised transfer learning approach and 2) the proposed graphone-based training method further improves the performance of both multilingual TTS and low-resource language adaptation. With only 5 minutes of paired data for fine-tuning, our method achieved highly intelligible synthetic speech with the character error rates of around 6 % for a target language. © 2014 IEEE.
Název v anglickém jazyce
Text-Inductive Graphone-Based Language Adaptation for Low-Resource Speech Synthesis
Popis výsledku anglicky
Neural text-to-speech (TTS) systems have made significant progress in generating natural synthetic speech. However, neural TTS requires large amounts of paired training data, which limits its applicability to a small number of resource-rich languages. Previous work on low-resource TTS has addressed the data hungriness based on transfer learning from a multilingual model to low-resource languages, but it still relies heavily on the availability of paired data for the target languages. In this paper, we propose a text-inductive language adaptation framework for low-resource TTS to address the cost of collecting the paired data for low-resource languages. To inject textual knowledge during transfer learning, our framework employs a two-stage adaptation scheme that utilizes both text-only and supervised data for the target language. In the text-based adaptation stage, we update the language-aware embedding layer with a masked language model objective using text-only data for the target language. In the supervised adaptation stage, the entire TTS model is updated using paired data for the target language. We also propose a graphone-based multilingual training method that jointly uses graphemes and International Phonetic Alphabet symbols (referred to as graphones) for resource-rich languages, while using only graphemes for low-resource languages. This approach facilitates the transfer of pronunciation knowledge from resource-rich to low-resource languages. Through extensive evaluations, we demonstrate that 1) our framework with text-based adaptation outperforms the previous supervised transfer learning approach and 2) the proposed graphone-based training method further improves the performance of both multilingual TTS and low-resource language adaptation. With only 5 minutes of paired data for fine-tuning, our method achieved highly intelligible synthetic speech with the character error rates of around 6 % for a target language. © 2014 IEEE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE/ACM Transactions on Audio Speech and Language Processing
ISSN
2329-9290
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1829-1844
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85186095360