Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Text-Inductive Graphone-Based Language Adaptation for Low-Resource Speech Synthesis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ATV6JFSCB" target="_blank" >RIV/00216208:11320/25:TV6JFSCB - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186095360&doi=10.1109%2fTASLP.2024.3369537&partnerID=40&md5=c3daca4375c1328493ed2c3c8db6a54c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186095360&doi=10.1109%2fTASLP.2024.3369537&partnerID=40&md5=c3daca4375c1328493ed2c3c8db6a54c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TASLP.2024.3369537" target="_blank" >10.1109/TASLP.2024.3369537</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Text-Inductive Graphone-Based Language Adaptation for Low-Resource Speech Synthesis

  • Popis výsledku v původním jazyce

    Neural text-to-speech (TTS) systems have made significant progress in generating natural synthetic speech. However, neural TTS requires large amounts of paired training data, which limits its applicability to a small number of resource-rich languages. Previous work on low-resource TTS has addressed the data hungriness based on transfer learning from a multilingual model to low-resource languages, but it still relies heavily on the availability of paired data for the target languages. In this paper, we propose a text-inductive language adaptation framework for low-resource TTS to address the cost of collecting the paired data for low-resource languages. To inject textual knowledge during transfer learning, our framework employs a two-stage adaptation scheme that utilizes both text-only and supervised data for the target language. In the text-based adaptation stage, we update the language-aware embedding layer with a masked language model objective using text-only data for the target language. In the supervised adaptation stage, the entire TTS model is updated using paired data for the target language. We also propose a graphone-based multilingual training method that jointly uses graphemes and International Phonetic Alphabet symbols (referred to as graphones) for resource-rich languages, while using only graphemes for low-resource languages. This approach facilitates the transfer of pronunciation knowledge from resource-rich to low-resource languages. Through extensive evaluations, we demonstrate that 1) our framework with text-based adaptation outperforms the previous supervised transfer learning approach and 2) the proposed graphone-based training method further improves the performance of both multilingual TTS and low-resource language adaptation. With only 5 minutes of paired data for fine-tuning, our method achieved highly intelligible synthetic speech with the character error rates of around 6 % for a target language. © 2014 IEEE.

  • Název v anglickém jazyce

    Text-Inductive Graphone-Based Language Adaptation for Low-Resource Speech Synthesis

  • Popis výsledku anglicky

    Neural text-to-speech (TTS) systems have made significant progress in generating natural synthetic speech. However, neural TTS requires large amounts of paired training data, which limits its applicability to a small number of resource-rich languages. Previous work on low-resource TTS has addressed the data hungriness based on transfer learning from a multilingual model to low-resource languages, but it still relies heavily on the availability of paired data for the target languages. In this paper, we propose a text-inductive language adaptation framework for low-resource TTS to address the cost of collecting the paired data for low-resource languages. To inject textual knowledge during transfer learning, our framework employs a two-stage adaptation scheme that utilizes both text-only and supervised data for the target language. In the text-based adaptation stage, we update the language-aware embedding layer with a masked language model objective using text-only data for the target language. In the supervised adaptation stage, the entire TTS model is updated using paired data for the target language. We also propose a graphone-based multilingual training method that jointly uses graphemes and International Phonetic Alphabet symbols (referred to as graphones) for resource-rich languages, while using only graphemes for low-resource languages. This approach facilitates the transfer of pronunciation knowledge from resource-rich to low-resource languages. Through extensive evaluations, we demonstrate that 1) our framework with text-based adaptation outperforms the previous supervised transfer learning approach and 2) the proposed graphone-based training method further improves the performance of both multilingual TTS and low-resource language adaptation. With only 5 minutes of paired data for fine-tuning, our method achieved highly intelligible synthetic speech with the character error rates of around 6 % for a target language. © 2014 IEEE.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE/ACM Transactions on Audio Speech and Language Processing

  • ISSN

    2329-9290

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    1829-1844

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85186095360