Analysis of Multilingual BLSTM Acoustic Model on Lowand High Resource Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F18%3APU130734" target="_blank" >RIV/00216305:26230/18:PU130734 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.fit.vutbr.cz/research/pubs/all.php?id=11720" target="_blank" >http://www.fit.vutbr.cz/research/pubs/all.php?id=11720</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2018.8462083" target="_blank" >10.1109/ICASSP.2018.8462083</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Multilingual BLSTM Acoustic Model on Lowand High Resource Languages
Popis výsledku v původním jazyce
The paper provides an analysis of automatic speech recognition systems (ASR) based on multilingual BLSTM, where we used multi-task training with separate classification layer for each language. The focus is on low resource languages, where only a limited amount of transcribed speech is available. In such scenario, we found it essential to train the ASR systems in a multilingual fashion and we report superior results obtained with pre-trained multilingual BLSTM on this task. The high resource languages are also taken into account and we show the importance of language richness for multilingual training. Next, we present the performance of this technique as a function of amount of target language data. The importance of including context information into BLSTM multilingual systems is also stressed, and we report increased resilience of large NNs to overtraining in case of multi-task training.
Název v anglickém jazyce
Analysis of Multilingual BLSTM Acoustic Model on Lowand High Resource Languages
Popis výsledku anglicky
The paper provides an analysis of automatic speech recognition systems (ASR) based on multilingual BLSTM, where we used multi-task training with separate classification layer for each language. The focus is on low resource languages, where only a limited amount of transcribed speech is available. In such scenario, we found it essential to train the ASR systems in a multilingual fashion and we report superior results obtained with pre-trained multilingual BLSTM on this task. The high resource languages are also taken into account and we show the importance of language richness for multilingual training. Next, we present the performance of this technique as a function of amount of target language data. The importance of including context information into BLSTM multilingual systems is also stressed, and we report increased resilience of large NNs to overtraining in case of multi-task training.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of ICASSP 2018
ISBN
978-1-5386-4658-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
5789-5793
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Calgary
Místo konání akce
Calgary
Datum konání akce
15. 4. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000446384605189