TOPRO: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ATXSDV93E" target="_blank" >RIV/00216208:11320/25:TXSDV93E - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189933264&partnerID=40&md5=6080c6b90adddc9c1614d55e5cc6f5f9" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189933264&partnerID=40&md5=6080c6b90adddc9c1614d55e5cc6f5f9</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TOPRO: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks
Popis výsledku v původním jazyce
Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (TOPRO), which facilitates the prompt-based method for token-level sequence labeling tasks. The TOPRO method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that TOPRO-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that TOPRO performs much better than the current in-context learning method. Overall, the performance improvements show that TOPRO could potentially serve as a novel and simple benchmarking method for sequence labeling tasks. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
TOPRO: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks
Popis výsledku anglicky
Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (TOPRO), which facilitates the prompt-based method for token-level sequence labeling tasks. The TOPRO method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that TOPRO-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that TOPRO performs much better than the current in-context learning method. Overall, the performance improvements show that TOPRO could potentially serve as a novel and simple benchmarking method for sequence labeling tasks. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EACL - Conf. European Chapter Assoc. Comput. Linguist., Proc. Conf.
ISBN
979-889176088-2
ISSN
—
e-ISSN
—
Počet stran výsledku
18
Strana od-do
2685-2702
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
St. Julian's
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—