Incremental Learning for GRU and RNN-based Assamese UPoS Tagger
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AU4IAHNHY" target="_blank" >RIV/00216208:11320/25:U4IAHNHY - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197553119&doi=10.14569%2fIJACSA.2024.0150633&partnerID=40&md5=430e0997b35e34907226d6b10395d512" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197553119&doi=10.14569%2fIJACSA.2024.0150633&partnerID=40&md5=430e0997b35e34907226d6b10395d512</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14569/IJACSA.2024.0150633" target="_blank" >10.14569/IJACSA.2024.0150633</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Incremental Learning for GRU and RNN-based Assamese UPoS Tagger
Popis výsledku v původním jazyce
This research paper introduces a novel approach to enhance the performance of Universal Part-of-Speech (UPoS) tagging for the low-resource language Assamese, employing Recurrent Neural Networks (RNNs) and Gated Recurrent Units (GRUs). The novelty added in this study is the experimentation with Incremental Learning, a dynamic paradigm allowing the models to continually refine their understanding as they encounter new set of linguistic data. The proposed model utilizes the strengths of GRUs and traditional RNNs to capture long range sequential dependencies and contextual information within Assamese sentences. Incorporation of Incremental Learning ensures the model’s adaptability to evolving linguistic patterns, particularly crucial for under-resourced languages like Assamese. Experimental results showcase the superiority of the proposed approach, achieving state-of-the-art accuracy in Assamese UPoS tagging. The research not only contributes to the field of natural language processing but also addresses the specific challenges posed by under-resourced languages. The significance of Incremental Learning is highlighted, showcasing its role in dynamically updating the model’s knowledge base with new UPoS-tagged data. This feature proves essential in real-world scenarios where language evolves, ensuring sustained optimal performance in Assamese UPoS tagging. The paper presents the details of the innovative framework for UPoS tagging in Assamese, combining the significance of Incremental Learning with Deep Learning techniques, pushing the boundaries of natural language processing models for low resource languages exploring the importance of dynamic learning paradigms. © (2024) Science and Information Organization. All rights reserved.
Název v anglickém jazyce
Incremental Learning for GRU and RNN-based Assamese UPoS Tagger
Popis výsledku anglicky
This research paper introduces a novel approach to enhance the performance of Universal Part-of-Speech (UPoS) tagging for the low-resource language Assamese, employing Recurrent Neural Networks (RNNs) and Gated Recurrent Units (GRUs). The novelty added in this study is the experimentation with Incremental Learning, a dynamic paradigm allowing the models to continually refine their understanding as they encounter new set of linguistic data. The proposed model utilizes the strengths of GRUs and traditional RNNs to capture long range sequential dependencies and contextual information within Assamese sentences. Incorporation of Incremental Learning ensures the model’s adaptability to evolving linguistic patterns, particularly crucial for under-resourced languages like Assamese. Experimental results showcase the superiority of the proposed approach, achieving state-of-the-art accuracy in Assamese UPoS tagging. The research not only contributes to the field of natural language processing but also addresses the specific challenges posed by under-resourced languages. The significance of Incremental Learning is highlighted, showcasing its role in dynamically updating the model’s knowledge base with new UPoS-tagged data. This feature proves essential in real-world scenarios where language evolves, ensuring sustained optimal performance in Assamese UPoS tagging. The paper presents the details of the innovative framework for UPoS tagging in Assamese, combining the significance of Incremental Learning with Deep Learning techniques, pushing the boundaries of natural language processing models for low resource languages exploring the importance of dynamic learning paradigms. © (2024) Science and Information Organization. All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Advanced Computer Science and Applications
ISSN
2158-107X
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
305-311
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85197553119