Enhanced prediction of parking occupancy through fusion of adaptive neuro-fuzzy inference system and deep learning models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F23%3A39920994" target="_blank" >RIV/00216275:25510/23:39920994 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0952197623018547?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0952197623018547?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2023.107670" target="_blank" >10.1016/j.engappai.2023.107670</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced prediction of parking occupancy through fusion of adaptive neuro-fuzzy inference system and deep learning models
Popis výsledku v původním jazyce
While predicting parking occupancy is crucial for managing urban congestion, existing models often exhibit gaps in accuracy, uncertainty handling, and integration potential. This study introduces an innovative combination of adaptive neuro-fuzzy inference system (ANFIS) and deep learning (DL) techniques to address these shortcomings. Specifically, ANFIS is utilized for its proficiency in uncertainty representation via fuzzy set theory, whereas DL models excel in automatic feature learning, non-linear modeling, and identifying long-term dependencies in time-series parking data. By integrating ANFIS with recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent units (GRU), we formulated the ANFIS-RNN, ANFIS-LSTM, and ANFIS-GRU fusion models, testing them on real-world parking datasets. Subsequent experiments highlighted the dominance of these fusion models over individual and benchmark counterparts. ANFIS-RNN achieved a 30.61% improvement in MSE, 16.70% in RMSE, 21.21% in MAE, 21.58% in MAPE, and a 1.03% elevation in R2 over the standalone RNN. The ANFIS-LSTM surpassed LSTM by 34.04% in MSE, 18.76% in RMSE, 26.16% in MAE, 27.71% in MAPE, with a 1.04% R2 increment. ANFIS-GRU exceeded GRU metrics by 27.54% in MSE, 14.85% in RMSE, 19.27% in MAE, 20.01% in MAPE, and boosted R2 by 1.03%. These outcomes underline the potential of integrated models in refining prediction precision. By leveraging the combined strengths of ANFIS and DL, this research offers a significant leap in parking occupancy forecasting. Its implications extend to data-centric urban planning and traffic regulation, marking a pivotal step for future endeavors in hybrid predictive modeling incorporating soft computing and deep learning paradigms.
Název v anglickém jazyce
Enhanced prediction of parking occupancy through fusion of adaptive neuro-fuzzy inference system and deep learning models
Popis výsledku anglicky
While predicting parking occupancy is crucial for managing urban congestion, existing models often exhibit gaps in accuracy, uncertainty handling, and integration potential. This study introduces an innovative combination of adaptive neuro-fuzzy inference system (ANFIS) and deep learning (DL) techniques to address these shortcomings. Specifically, ANFIS is utilized for its proficiency in uncertainty representation via fuzzy set theory, whereas DL models excel in automatic feature learning, non-linear modeling, and identifying long-term dependencies in time-series parking data. By integrating ANFIS with recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent units (GRU), we formulated the ANFIS-RNN, ANFIS-LSTM, and ANFIS-GRU fusion models, testing them on real-world parking datasets. Subsequent experiments highlighted the dominance of these fusion models over individual and benchmark counterparts. ANFIS-RNN achieved a 30.61% improvement in MSE, 16.70% in RMSE, 21.21% in MAE, 21.58% in MAPE, and a 1.03% elevation in R2 over the standalone RNN. The ANFIS-LSTM surpassed LSTM by 34.04% in MSE, 18.76% in RMSE, 26.16% in MAE, 27.71% in MAPE, with a 1.04% R2 increment. ANFIS-GRU exceeded GRU metrics by 27.54% in MSE, 14.85% in RMSE, 19.27% in MAE, 20.01% in MAPE, and boosted R2 by 1.03%. These outcomes underline the potential of integrated models in refining prediction precision. By leveraging the combined strengths of ANFIS and DL, this research offers a significant leap in parking occupancy forecasting. Its implications extend to data-centric urban planning and traffic regulation, marking a pivotal step for future endeavors in hybrid predictive modeling incorporating soft computing and deep learning paradigms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
1873-6769
Svazek periodika
129
Číslo periodika v rámci svazku
107670
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
001141193200001
EID výsledku v databázi Scopus
2-s2.0-85179582169