Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhanced prediction of parking occupancy through fusion of adaptive neuro-fuzzy inference system and deep learning models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F23%3A39920994" target="_blank" >RIV/00216275:25510/23:39920994 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0952197623018547?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0952197623018547?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2023.107670" target="_blank" >10.1016/j.engappai.2023.107670</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhanced prediction of parking occupancy through fusion of adaptive neuro-fuzzy inference system and deep learning models

  • Popis výsledku v původním jazyce

    While predicting parking occupancy is crucial for managing urban congestion, existing models often exhibit gaps in accuracy, uncertainty handling, and integration potential. This study introduces an innovative combination of adaptive neuro-fuzzy inference system (ANFIS) and deep learning (DL) techniques to address these shortcomings. Specifically, ANFIS is utilized for its proficiency in uncertainty representation via fuzzy set theory, whereas DL models excel in automatic feature learning, non-linear modeling, and identifying long-term dependencies in time-series parking data. By integrating ANFIS with recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent units (GRU), we formulated the ANFIS-RNN, ANFIS-LSTM, and ANFIS-GRU fusion models, testing them on real-world parking datasets. Subsequent experiments highlighted the dominance of these fusion models over individual and benchmark counterparts. ANFIS-RNN achieved a 30.61% improvement in MSE, 16.70% in RMSE, 21.21% in MAE, 21.58% in MAPE, and a 1.03% elevation in R2 over the standalone RNN. The ANFIS-LSTM surpassed LSTM by 34.04% in MSE, 18.76% in RMSE, 26.16% in MAE, 27.71% in MAPE, with a 1.04% R2 increment. ANFIS-GRU exceeded GRU metrics by 27.54% in MSE, 14.85% in RMSE, 19.27% in MAE, 20.01% in MAPE, and boosted R2 by 1.03%. These outcomes underline the potential of integrated models in refining prediction precision. By leveraging the combined strengths of ANFIS and DL, this research offers a significant leap in parking occupancy forecasting. Its implications extend to data-centric urban planning and traffic regulation, marking a pivotal step for future endeavors in hybrid predictive modeling incorporating soft computing and deep learning paradigms.

  • Název v anglickém jazyce

    Enhanced prediction of parking occupancy through fusion of adaptive neuro-fuzzy inference system and deep learning models

  • Popis výsledku anglicky

    While predicting parking occupancy is crucial for managing urban congestion, existing models often exhibit gaps in accuracy, uncertainty handling, and integration potential. This study introduces an innovative combination of adaptive neuro-fuzzy inference system (ANFIS) and deep learning (DL) techniques to address these shortcomings. Specifically, ANFIS is utilized for its proficiency in uncertainty representation via fuzzy set theory, whereas DL models excel in automatic feature learning, non-linear modeling, and identifying long-term dependencies in time-series parking data. By integrating ANFIS with recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent units (GRU), we formulated the ANFIS-RNN, ANFIS-LSTM, and ANFIS-GRU fusion models, testing them on real-world parking datasets. Subsequent experiments highlighted the dominance of these fusion models over individual and benchmark counterparts. ANFIS-RNN achieved a 30.61% improvement in MSE, 16.70% in RMSE, 21.21% in MAE, 21.58% in MAPE, and a 1.03% elevation in R2 over the standalone RNN. The ANFIS-LSTM surpassed LSTM by 34.04% in MSE, 18.76% in RMSE, 26.16% in MAE, 27.71% in MAPE, with a 1.04% R2 increment. ANFIS-GRU exceeded GRU metrics by 27.54% in MSE, 14.85% in RMSE, 19.27% in MAE, 20.01% in MAPE, and boosted R2 by 1.03%. These outcomes underline the potential of integrated models in refining prediction precision. By leveraging the combined strengths of ANFIS and DL, this research offers a significant leap in parking occupancy forecasting. Its implications extend to data-centric urban planning and traffic regulation, marking a pivotal step for future endeavors in hybrid predictive modeling incorporating soft computing and deep learning paradigms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20104 - Transport engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Applications of Artificial Intelligence

  • ISSN

    0952-1976

  • e-ISSN

    1873-6769

  • Svazek periodika

    129

  • Číslo periodika v rámci svazku

    107670

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    1-20

  • Kód UT WoS článku

    001141193200001

  • EID výsledku v databázi Scopus

    2-s2.0-85179582169