MELA: Multilingual Evaluation of Linguistic Acceptability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AVDHW2J8W" target="_blank" >RIV/00216208:11320/25:VDHW2J8W - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204436622&partnerID=40&md5=936049d43bab424e20b243a2baa4b851" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204436622&partnerID=40&md5=936049d43bab424e20b243a2baa4b851</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MELA: Multilingual Evaluation of Linguistic Acceptability
Popis výsledku v původním jazyce
In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability-MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language-Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks. https://github.com/sjtu-compling/MELA. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
MELA: Multilingual Evaluation of Linguistic Acceptability
Popis výsledku anglicky
In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability-MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language-Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks. https://github.com/sjtu-compling/MELA. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Annu. Meet. Assoc. Comput Linguist.
ISBN
979-889176094-3
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
17
Strana od-do
2658-2674
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Bangkok
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—